Skip to main content

Advertisement

Log in

Short-Term Land use Planning and Optimal Subsidies

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Urban planning is a complex problem which includes choosing a social objective for a city, finding the associated optimal allocation of agents and identifying instruments like subsidies to decentralize this allocation as a market equilibrium. We split the problem in two independent steps. First, we find the short-term optimal allocation for a social objective and, second, we derive subsidies that reproduce this optimal allocation as a market equilibrium. This splitting is supported by a fundamental result asserting that the optimal allocation of any social objective can be decentralized by applying feasible subsidies, which can be computed even in the case with location externalities and transportation costs. In the first step, we compute the optimal allocation using an algorithm to solve a convex urban planning problem, which is applicable to a wide class of objective functions. In the second step, we compute optimal subsidies in several political situations for the planner, like budget constraints and limited impact on specific agents, zones, rents and/or utilities. As an example, we simulate a prototype city which aims at improving social inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This setting assumes free reallocation of households, but it can also be seen in a dynamic context as a one-period short-term allocation, by setting (Hh)hC as the proportion of households looking for locations and (Si)iN as the proportion of available supply in the period. Additionally, the utilities (zhi)hC, iN may include inertia factors representing costs to move.

References

  • Águila LF (2006) Modelo Operativo de planificación Óptima de Subsidios en Sistemas Urbanos MSc. Thesis, Universidad de Chile

  • Anas A (1982) Residential location markets and urban transportation. Academic Press, London

    Google Scholar 

  • Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in hilbert spaces. Springer, New York

    Book  Google Scholar 

  • Bravo M, Briceño-Arias LM, Cominetti R, Cortés CE, Martínez FJ (2010) An integrated behavioral model of the land-use and transport systems with network congestion and location externalities. Transp Res B Methodol 44(4):584–596

    Article  Google Scholar 

  • Briceño-Arias LM, Cominetti R, Cortés CE, Martínez FJ (2008) An integrated behavioral model of land use and transport system: a hyper-network equilibrium approach. Netw Spatial Econ 8:201–224

    Article  Google Scholar 

  • Briceño-Arias LM, Combettes PL (2011) A monotone+skew splitting model for composite monotone inclusions in duality. SIAM J Optim 21:1230–1250

    Article  Google Scholar 

  • Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. SIAM J Multiscale Model Simul 4:1168–1200

    Article  Google Scholar 

  • Ellickson B (1981) An alternative test of the hedonic theory of housing markets. J Urban Econ 9(1):56–79

    Article  Google Scholar 

  • Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms I. Springer, Berlin

    Book  Google Scholar 

  • Hunt JD, Kriger DS, Miller EJ (2005) Current operational urban land-use-transport modelling frameworks: a review. Transp Rev 25(3):329–376

    Article  Google Scholar 

  • Ma X, Lo HK (2012) Modeling transport management and land use over time. Transp Res B Methodol 46(6):687–709

    Article  Google Scholar 

  • Macgill SM (1977) Theoretical properties of biproportional matrix adjustments. Environ Plann A 9(6):687—701

    Article  Google Scholar 

  • Martínez F (1992) The Bid-Choice land use model: an integrated economic framework. Environ Plann A 24(6):871–885

    Article  Google Scholar 

  • Martínez F, Henríquez R (2007) A random bidding and supply land use model. Transp Res Part B: Methodol 41(6):632–651

    Article  Google Scholar 

  • Preston J, Simmonds D, Pagliara F (2010) Residential location choice: Models and applications. Springer, Berlin

    Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series, vol 28. Princeton University Press, Princeton

    Google Scholar 

  • Rossi-Hansberg E (2004) Optimal urban land use and zoning. Rev Econ Dyn 7:69–106

    Article  Google Scholar 

  • Timmermans HJP, Zhang J (2009) Modeling household activity travel behavior: Example of the state of the art modeling approaches and research agenda. Transp Res B Methodol 43:187–190

    Article  Google Scholar 

  • Wegener M (1994) Operational urban models: State of the art. J Am Plan Assoc 60(1):17–29

    Article  Google Scholar 

  • Wegener M, Kim TJ (1998) Models of urban land use, transport and environment. In: Lundqvist, L, Mattsson, L-G (eds) Network Infrastructure and the Urban Environment. Advances in Spatial science. Springer, Berlin

  • Ying JQ (2015) Optimization for multiclass residential location models with congestible transportation networks. Transp Sci 49(3):452–471

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Complex Engineering Systems Institute, ISCI (ICM-FIC: P05-004-F, CONICYT: FB0816), by project FONDECYT 11140360, and by “Programa de financiamiento basal” from the Center for Mathematical Modeling, Universidad de Chile. The authors thanks C. Vigouroux for his help with simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martínez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Notation and preliminaries

Let \(({{\mathcal H}},\|\cdot \|)\) be a finite dimensional Euclidean space and denote by \({\Gamma }_{0}({{\mathcal H}})\) the family of lower semicontinuous convex functions \(\varphi \colon {{\mathcal H}}\to {\left ]-\infty ,+\infty \right ]}\) such that \({\operatorname {dom}}\varphi =\left \{{x\in {{\mathcal H}}} \big | {\varphi (x)<{{+\infty }}}\right \}\neq {{\varnothing }}\). A function \(\varphi \colon {{\mathcal H}}\to {\left ]-\infty ,+\infty \right ]}\) is coercive if \(\lim _{\|x\|\to {{+\infty }}}\varphi (x)={{+\infty }}\). Now let \(\varphi \in {\Gamma }_{0}({{\mathcal H}})\). The conjugate of φ is the function \(\varphi ^{*}\in {\Gamma }_{0}({{\mathcal H}})\) defined by \(\varphi ^{*}\colon u\mapsto \sup _{x\in {{\mathcal H}}}({\left \langle {{x}\mid {u}}\right \rangle }-\varphi (x))\). Moreover, for every \(x\in {{\mathcal H}}\), φ + ∥x −⋅∥2/2 possesses a unique minimizer, which is denoted by proxφx. Alternatively,

$$ {\operatorname{prox}}_{\varphi}=({\operatorname{Id}} +\partial\varphi)^{-1}, $$
(45)

where

$$ \partial\varphi\colon{{\mathcal H}}\to2^{{{\mathcal H}}}\colon x\mapsto\{u\in{{\mathcal H}}| {(\forall y\in{{\mathcal H}})\quad{\left\langle{{y-x}\mid{u}}\right\rangle}+\varphi(x)\leq\varphi(y)}\} $$
(46)

is the subdifferential of φ. In the particular case when φ is differentiable in some subset C of \({{\mathcal H}}\), we have, for every xC, φ(x) = {∇φ(x)}. For every convex subset C of \({{\mathcal H}}\), the indicator function of C, denoted by ιC, is the function which is 0 in C and + in \({{\mathcal H}}\setminus C\).

The following result will be useful in the following sections and some parts of it can be derived from the proof given in Rockafellar (1970, Corollary 26.3.1).

Lemma 1

Let\(\psi \colon {\operatorname {dom}}\psi \subset {\mathbb {R}}\to {\left ]-\infty ,+\infty \right ]}\)bestrictly convex, differentiable in intdomψ, and such that\({\operatorname {ran}}(\psi ^{\prime })={\mathbb {R}}\). Then,ψis strictly convex, differentiable in\({\operatorname {dom}}\psi ^{*}={\mathbb {R}}\), and ranψ⊂domψ. Moreover,

$$ \psi^{*}\colon \eta\mapsto (\psi^{\prime})^{-1}(\eta)\eta-\psi\left( (\psi^{\prime})^{-1}(\eta)\right) \quad\text{and}\quad (\psi^{*})^{\prime}=(\psi^{\prime})^{-1}. $$
(47)

1.2 Dual problem computation

For computing the dual formulation of Problem 1, we need the following definitions and preliminaries. Define

$$ \left\{\begin{array}{ll} \boldsymbol{\Psi}\colon{\mathbb{R}}^{|C|\times|N|}\to{\left]-\infty,+\infty\right]}\\ \hspace{1.34cm}{\boldsymbol{x}}\quad\mapsto\quad \left\{\begin{array}{ll} \displaystyle{\sum\limits_{h\in C}\sum\limits_{i\in N}\psi_{hi}(z_{hi},x_{hi})}, &\text{if} {\boldsymbol{x}}\in\underset{h\in C}{{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}\underset{i\in N}{{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}{\operatorname{dom}}\psi_{hi}(z_{hi},\cdot)\\ {{+\infty}},&\text{otherwise} \end{array}\right.\\ \boldsymbol{{\Lambda}} \colon{\mathbb{R}}^{|C|\times|N|}\to{\mathbb{R}}^{|C|+|N|}\\ \hspace{1.3cm}{\boldsymbol{x}}\quad\mapsto\quad\displaystyle{\left( \left( \sum\limits_{i\in N}x_{hi}\right)_{h\in C},\left( \sum\limits_{h\in C} x_{hi}\right)_{i\in N}\right)}, \end{array}\right. $$
(48)

where x = (xhi)hC, iN is a generic element of \({\mathbb {R}}^{|C|\times |N|}\).

Proposition 6 (Properties of Ψ and Λ)

LetΨandΛbedefined as in Eq. 48. Then, the following statements hold.

  1. 1.

    Ψis strictly convex, coercive, and

    $$ (\forall \gamma\in{\left]0,+\infty\right[})\quad {\operatorname{prox}}_{\gamma\boldsymbol{\Psi}} =\left( {\operatorname{prox}}_{\gamma\psi_{hi}(z_{hi},\cdot)}\right)_{h\in C, i\in N}. $$
    (49)
  2. 2.

    We have

    $$ \boldsymbol{\Psi}^{*}\colon{\mathbb{R}}^{|C|\times|N|}\to{\left]-\infty,+\infty\right]} \colon\boldsymbol{u}\mapsto \sum\limits_{h\in C}\sum\limits_{i\in N}\varphi_{hi}(z_{hi},u_{hi}), $$
    (50)

    where, for everyhCandiN,

    $$ \varphi_{hi}\colon (z_{hi},u)\mapsto\psi_{hi}(z_{hi},\cdot)^{*}(u) =\sup_{x\in\left[0,a_{hi}\right[}({\left\langle{{x}\mid{u}}\right\rangle} -\psi_{hi}(z_{hi},x)) $$
    (51)

    is differentiable. Moreover, Ψis differentiable and ∇Ψ = (φhi(zhi, ⋅))hC, iN. In addition, suppose that, for everyhCandiN, ψhi(zhi, ⋅) is differentiable in ]0,ahi[ and\({\operatorname {ran}}(\psi _{hi}(z_{hi},\cdot )')={\mathbb {R}}\). Then, for everyhCandiN,

    $$ (\forall u\in{\mathbb{R}})\quad \varphi_{hi}(z_{hi},u)=(\psi_{hi}(z_{hi},\cdot)')^{-1} (u)u-\psi_{hi}\left( z_{hi},(\psi_{hi}(z_{hi},\cdot)')^{-1}(u)\right), $$
    (52)

    φhi(zhi, ⋅) = (ψhi(zhi, ⋅))− 1, andΨis strictly convex.

  3. 3.

    Λis linear, bounded, Λ: (b, r)↦(bh + ri)hC, iN, where (b, r) = ((bh)hC, (ri)iN) is a generic element of\({\mathbb {R}}^{|C|+|N|}\), and\(\|\boldsymbol {{\Lambda }} \|=\sqrt {|C|+|N|}\).

Proof

1: Is a consequence of Eq. 48, the properties of the class \(\mathscr{C}\) in Eq. 3, and Combettes and Wajs (2005, Lemma 2.9). 2: It follows from Bauschke and Combettes (2011, Proposition 13.27) that \(\boldsymbol {\Psi }^{*}={\sum }_{h\in C}{\sum }_{i\in N} \psi _{hi}(z_{hi},\cdot )^{*}={\sum }_{h\in C}{\sum }_{i\in N}\varphi _{hi}(z_{hi},\cdot )\). The differentiability follows from Hiriart-Urruty and Lemaréchal (1993, Proposition 6.2.1) and the last result follows from Lemma 1. 3: It is clear that Λ is linear and bounded. For every \({\boldsymbol {x}}\in {\mathbb {R}}^{|C|\times |N|}\) and \(({\boldsymbol {b}},{\boldsymbol {r}})\in {\mathbb {R}}^{|C|+|N|}\), we have

$$ \begin{array}{@{}rcl@{}} {\left\langle{{({\boldsymbol{b}},{\boldsymbol{r}})}\mid{\boldsymbol{{\Lambda}} {\boldsymbol{x}}}}\right\rangle}&=&\sum\limits_{h\in C}b_{h}\left( \sum\limits_{i\in N}x_{hi}\right)+ \sum\limits_{i\in N}r_{i}\left( \sum\limits_{i\in N}x_{hi}\right)\\ &=&\sum\limits_{h\in C}\sum\limits_{i\in N}x_{hi}(b_{h}+r_{i})\\ &=&{\left\langle{{\boldsymbol{{\Lambda}}^{*}({\boldsymbol{b}},{\boldsymbol{r}})}\mid{{\boldsymbol{x}}}}\right\rangle}. \end{array} $$
(53)

On the other hand, using the inequality 2xyx2 + y2 we obtain, for every \({\boldsymbol {x}}\in {\mathbb {R}}^{|C|\times |N|}\),

$$ \begin{array}{@{}rcl@{}} \|\boldsymbol{{\Lambda}} {\boldsymbol{x}}\|^{2} &=&\sum\limits_{h\in C}\left( \sum\limits_{i\in N}x_{hi}\right)^{2}+\sum\limits_{i\in N}\left( \sum\limits_{h\in C}x_{hi}\right)^{2}\\ &=&\sum\limits_{h\in C}\left( \sum\limits_{i\in N}x_{hi}^{2}+\sum\limits_{j\neq i}2x_{hi}x_{hj}\right) +\sum\limits_{i\in N}\left( \sum\limits_{h\in C}x_{hi}^{2}+\sum\limits_{g\neq h}2x_{hi}x_{gi}\right)\\ &\leq&\sum\limits_{h\in C}\left( \sum\limits_{i\in N}x_{hi}^{2}+(|N|-1)\sum\limits_{i\in N}x_{hi}^{2}\right) +\sum\limits_{i\in N}\left( \sum\limits_{h\in C}x_{hi}^{2}+(|C|-1)\sum\limits_{h\in C}x_{hi}^{2}\right)\\ &=&(|C|+|N|)\|{\boldsymbol{x}}\|^{2}, \end{array} $$
(54)

which yields \(\|\boldsymbol {{\Lambda }} \|\leq \sqrt {|C|+|N|}\). The equality follows by taking, in particular, for every (h, i) ∈ C × N, xhi = 1, which yields

$$ \|\boldsymbol{{\Lambda}} {\boldsymbol{x}}\|^{2}=\sum\limits_{h\in C}|N|^{2}+\sum\limits_{i\in N}|C|^{2} =(|C|+|N|)|C||N|=(|C|+|N|)\|{\boldsymbol{x}}\|^{2}. $$
(55)

Hence \(\|\boldsymbol {{\Lambda }} \|=\sqrt {|C|+|N|}\). □

Proof of Proposition 1

Indeed, Problem 1 can be written equivalently as

$$ \underset{\underset{\boldsymbol{{\Lambda}} {\boldsymbol{x}} =(\boldsymbol{H},\boldsymbol{S})}{\boldsymbol{x} \in{\mathbb{R}}^{|C|\times|N|}}}{\text{minimize}} \boldsymbol{\Psi}({\boldsymbol{x}}), $$
(56)

where Ψ and Λ are defined in Eq. 6. Therefore, from Bauschke and Combettes (2011, Proposition 19.19) we have that the dual problem is

$$ {\underset{({\boldsymbol{b}},{\boldsymbol{r}})\in{\mathbb{R}}^{|C|+|N|}} {\text{minimize}} \boldsymbol{\Psi}^{*}(-\boldsymbol{{\Lambda}}^{*}({\boldsymbol{b}},{\boldsymbol{r}})) +{\left\langle{{({\boldsymbol{b}},{\boldsymbol{r}})}\mid{(\boldsymbol{H},\boldsymbol{S})}}\right\rangle}} , $$
(57)

or equivalently, from Proposition 62-3,

$$ {\underset{({\boldsymbol{b}},{\boldsymbol{r}})\in{\mathbb{R}}^{|C|+|N|}} {\text{minimize}} \sum\limits_{h\in C}\sum\limits_{i\in N} \varphi_{hi}(z_{hi},-b_{h}-r_{i})+\sum\limits_{h\in C}H_{h}b_{h}+\sum\limits_{i\in N}S_{i}r_{i}} , $$
(58)

and the proof is finished. □

Proof of Proposition 2

Since \(\boldsymbol {\Psi }\in {\Gamma }_{0}({\mathbb {R}}^{|C|\times |N|})\) is coercive, Ξ is closed and convex, and Eq. 5 yields \({\Xi }\cap {\operatorname {dom}}\boldsymbol {\Psi }\neq {{\varnothing }}\), Bauschke and Combettes (2011, Proposition 11.4(i)) asserts that the primal problem has solutions. It follows from Eq. 56 that Problem 1 can be written equivalently as

$$ {\underset{{\boldsymbol{x}}\in{\mathbb{R}}^{|C|\times|N|}} {\text{minimize}} \boldsymbol{\Psi}({\boldsymbol{x}}) +\iota_{\{(\boldsymbol{H},\boldsymbol{S})\}}(\boldsymbol{{\Lambda}} {\boldsymbol{x}})} . $$
(59)

Note that \(\iota _{\{(\boldsymbol {H},\boldsymbol {S})\}}\in {\Gamma }_{0}({\mathbb {R}}^{|C|+|N|})\) is polyhedral. Now, since (H, S) ∈ ]0, +[|C|+|N|, it follows from Eqs. 5 and 48 that

$$ (\boldsymbol{H},\boldsymbol{S})\in{\operatorname{int}}\left( \boldsymbol{{\Lambda}} \left( \underset{h\in C}{{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}\underset{i\in N} {{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}\left[0,a_{hi}\right[\right)\right)=\underset{h\in C}{{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}\left]0,a_{h}\right[\times\underset{i\in N}{{\raisebox{-0.5mm} {\text{\LARGE{\(\times\)}}}}\!}\left]0,a_{i}\right[, $$
(60)

where, for every hC, \(a_{h}={\sum }_{i\in I}a_{hi}\) and, for every iN, \(a_{i}={\sum }_{h\in C}a_{hi}\). Hence, from Bauschke and Combettes (2011, Fact 15.25) we have \(\inf (\boldsymbol {\Psi }+ \iota _{\{(\boldsymbol {H},\boldsymbol {S})\}}\circ \boldsymbol {{\Lambda }} )=-\min (\boldsymbol {\Psi }^{*} \circ -\boldsymbol {{\Lambda }}^{*}+\iota ^{*}_{\{(\boldsymbol {H},\boldsymbol {S})\}})\). Therefore, we have existence of solutions to the dual problem. Moreover, it follows from Proposition 62 that Ψ is differentiable in \(\mathbb {R}^{|C|+|N|}\). Altogether, Bauschke and Combettes (2011, Proposition 19.3) asserts that Problem 1 has a unique solution

$$ \overline{\boldsymbol{x}}=\nabla\boldsymbol{\Psi}^{*}(\boldsymbol{{\Lambda}}^{*}(\overline{\boldsymbol{b}}, \overline{\boldsymbol{r}})), $$
(61)

where \((\overline {\boldsymbol {b}},\overline {\boldsymbol {r}})\) is a solution to the dual problem (7). Moreover, it follows from Lemma 1 and Proposition 63 that Eq. 61 is equivalent to

$$ (\forall h\in C)(\forall i\in N)\quad \overline{x}_{hi} =(\psi_{hi}(z_{hi},\cdot)^{*})'(\overline{b}_{h}+\overline{r}_{i}) =\left( \varphi_{hi}(z_{hi},\cdot)\right)'(\overline{b}_{h}+\overline{r}_{i}). $$
(62)

Finally let us prove that, under one of the constraints 1–4, Φ is strictly convex and, hence, the dual problem (7) has a unique solution. Indeed, it follows from Lemma 1 that, for every hC and iN, φhi is strictly convex. Let (b1, r1)≠(b2, r2) be vectors in \({\mathbb {R}}^{|C|+|N|}\) and let α ∈ ]0, 1[. We have

$$ \begin{array}{@{}rcl@{}} \boldsymbol{\Phi}(\alpha({\boldsymbol{b}}^{1}\!,{\boldsymbol{r}}^{1}\!) + (1 - \alpha)({\boldsymbol{b}}^{2},{\boldsymbol{r}}^{2})) &=&\sum\limits_{h\in C}H_{h}(\alpha {b_{h}^{1}}+(1-\alpha){b_{h}^{2}})+ \sum\limits_{i\in N}S_{i}(\alpha {r_{i}^{1}}+(1-\alpha){r_{i}^{2}})\\ &&\hskip.4cm+\!\sum\limits_{h\in C}\sum\limits_{i\in N}\varphi_{hi}\left( z_{hi}, -(\alpha {b_{h}^{1}} + (1-\alpha){b_{h}^{2}})-(\alpha {r_{i}^{1}} + (1-\alpha){r_{i}^{2}})\right)\\ &=&\alpha\left( \!\sum\limits_{h\in C}H_{h}{b_{h}^{1}}+\sum\limits_{i\in N}S_{i}{r_{i}^{1}}\right) + (1-\alpha)\left( \!\sum\limits_{h\in C}H_{h}{b_{h}^{2}}+\sum\limits_{i\in N}S_{i}{r_{i}^{2}}\right)\\ &&\hskip.4cm+\!\sum\limits_{h\in C}\sum\limits_{i\in N}\varphi_{hi}\left( z_{hi}, \alpha(-{b_{h}^{1}}-{r_{i}^{1}})+(1-\alpha)(-{b_{h}^{2}}-{r_{i}^{2}})\right). \end{array} $$
(63)

Since, for every hC and iN, φhi(zhi, ⋅) is strictly convex, it is enough to prove that, under one of the constraints 1–4, there exist h0C and i0N such that \(-b_{h_{0}}^{1}-r_{i_{0}}^{1}\neq -b_{h_{0}}^{2}-r_{i_{0}}^{2}\), in which case from Eq. 63 we obtain that

$$ \boldsymbol{\Phi}(\alpha({\boldsymbol{b}}^{1},{\boldsymbol{r}}^{1})+(1-\alpha)({\boldsymbol{b}}^{2}, {\boldsymbol{r}}^{2}))<\alpha\boldsymbol{\Phi}({\boldsymbol{b}}^{1},{\boldsymbol{r}}^{1}) +(1-\alpha)\boldsymbol{\Phi}({\boldsymbol{b}}^{2},{\boldsymbol{r}}^{2}), $$
(64)

and the result follows. Let us proceed by contradiction. Suppose that

$$ (\forall h\in C)(\forall i\in N)\quad -{b_{h}^{1}}-{r_{i}^{1}}=-{b_{h}^{2}}-{r_{i}^{2}}. $$
(65)

If 1 holds, we have \({b_{1}^{1}}={b_{1}^{2}}=\eta \) and we deduce from Eq. 65 in the particular case h = 1 that, for every iN, \({r_{i}^{1}}={r_{i}^{2}}\). Hence, it follows again from Eq. 65 that, for every hC ∖{1}, \({b_{h}^{1}}={b_{h}^{2}}\), which contradicts (b1, r1)≠(b2, r2). Now suppose that 2 holds. Then we have \({\sum }_{h\in C}{b_{h}^{1}}={\sum }_{h\in C}{b_{h}^{2}}=\eta \) and, by summing in h in Eq. 65, we deduce, for every iN, \({r_{i}^{1}}={r_{i}^{2}}\). The contradiction is obtained in the same way as before. The cases 3 and 4 are analogous. □

1.3 Planning algorithms

Proposition 7 (Planning problem algorithm)

For everyhCandiN, let\((e_{hi,n})_{n\in {\mathbb N}}\)bean absolutely summable sequence in\({\mathbb {R}}\), let\(x_{hi,0}\in {\mathbb {R}}\), let\((b_{h,0},r_{i,0})\in {\mathbb {R}}^{2}\), let\(\varepsilon \in \left ]0,1/(\sqrt {|C|+|N|}+ 1)\right [\), let\((\gamma _{n})_{n\in {\mathbb N}}\)bea sequence in\([\varepsilon ,(1-\varepsilon )/\sqrt {|C|+|N|} ]\), and set

$$ (\forall n\in{\mathbb N})\quad \begin{array}{l} \left\lfloor \begin{array}{l} \textup{For every } h\in C \text{and} i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} y_{1hi,n}=x_{hi,n}-\gamma_{n}(b_{h,n}+r_{i,n})\\ p_{1hi,n}={\operatorname{prox}}_{\gamma_{n}\psi_{hi}(z_{hi},\cdot)}y_{1hi,n}+e_{hi,n} \end{array} \right. \end{array}\\ \textup{For every } h\in C\\ \begin{array}{l} \left\lfloor \begin{array}{l} p_{2h,n}=b_{h,n}+\gamma_{n}\left( {\sum}_{i\in N}x_{hi,n}-H_{h}\right)\\ b_{h,n + 1}=b_{h,n}+\gamma_{n}\left( {\sum}_{i\in N}p_{1hi,n}-H_{h}\right) \end{array} \right. \end{array}\\ \textup{For every } i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} p_{2i,n}=r_{i,n}+\gamma_{n}\left( {\sum}_{h\in C}x_{hi,n}-S_{i}\right)\\ r_{i,n + 1}=r_{i,n}+\gamma_{n}\left( {\sum}_{h\in C}p_{1hi,n}-S_{i}\right) \end{array} \right. \end{array}\\ \textup{For every } h\in C \text{and} i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} q_{hi,n}=p_{1hi,n}-\gamma_{n}(p_{2h,n}+p_{2i,n})\\ x_{hi,n + 1}=x_{hi,n}-y_{1hi,n}+q_{hi,n} \end{array} \right. \end{array} \end{array} \right. \end{array} $$
(66)

Then the following statements hold for the solution\(((\overline {x}_{hi})_{h\in C})_{i\in N}\)to Problem 1 and some solution\(\left ((\overline {b}_{h})_{h\in C},(\overline {r}_{i})_{i\in N}\right )\)to its dual in Eq. 7.

  1. 1.

    For everyhCandiN, xhi, np1hi, n → 0, bh, np2h, n → 0, andri, np2i, n → 0.

  2. 2.

    For everyhCandiN, \(x_{hi,n}\to \overline {x}_{hi}\), \(p_{1hi,n}\to \overline {x}_{hi}\), \(b_{h,n}\to \overline {b}_{h}\), \(p_{2h,n}\to \overline {b}_{h}\), \(r_{i,n}\to \overline {r}_{i}\), and\(p_{2i,n}\to \overline {r}_{i}\).

Proof

See (Briceño-Arias and Combettes 2011). □

The difficulty of the algorithm proposed in Proposition 7 lies in the computation, for every hC, iN, and \(n\in {\mathbb N}\), of \({\operatorname {prox}}_{\gamma _{n}\psi _{hi}(z_{hi},\cdot )}\). Several examples in which the proximity operator can be computed explicitly can be found in Combettes and Wajs (2005). The following result shows some interesting cases in which an explicit computation of the proximity operator can be obtained.

Lemma 2

Let\(z\in {\mathbb {R}}\),a ∈ ]0, +[,b ∈ ]0, +[,γ ∈ ]0, +[, andμ ∈ ]0, +[.

  1. 1.

    Let\(\psi \colon (z,x)\mapsto -zx+\frac {1}{\mu } x(\ln x-1)\).Then\(\psi \in \mathscr{C}\)and\({\operatorname {prox}}_{\gamma \psi (z,\cdot )}\colon x\mapsto \frac {\gamma }{\mu } W(\frac {\mu }{\gamma } e^{\mu (x/\gamma +z)})\),where W is the product log function.

  2. 2.

    Letψ: (z, x)↦ι[0,+[zx + a(xb)2.Then\(\psi \in \mathscr{C}\)andproxγψ(z,⋅): x↦ max{(x + γz + 2γab)/(1 + 2γa), 0}.

Proof

Let \((x,p)\in {\mathbb {R}}^{2}\). It is clear from Eq. 3 that both functions are in \(\mathscr{C}\). 1: We have \(p={\operatorname {prox}}_{\gamma \psi (z,\cdot )}x \Leftrightarrow x-p=\gamma \psi (z,\cdot )'(p) \Leftrightarrow x+\gamma z=p+\frac {\gamma }{\mu }\ln p \Leftrightarrow \frac {\mu }{\gamma }x+ \mu z=\frac {\mu }{\gamma }p+\ln p \Leftrightarrow e^{\mu (x/\gamma + z)}=pe^{\frac {\mu }{\gamma }p} \Leftrightarrow \frac {\mu }{\gamma }p =W(\frac {\mu }{\gamma }e^{\mu (x/\gamma + z)})\), and the result follows. 2: We have p = proxγψ(z,⋅)xxpγψ(z,⋅)(p) ⇔ xpN[0,+[(p)−γz+ 2γa(pb) ⇔ x+γz+ 2γabN[0,+[(p)+p(1 + 2γa) ⇔ (x+γz+ 2γab)/(1 + 2γa) ∈ N[0,+[(p)+pp = P[0,+[((x+γz+ 2γab)/(1 + 2γa)), which yields the result. □

Example 5

(Social inclusion algorithm) As an example of Proposition 7, we consider the social inclusion problem (38) by using the algorithm proposed in Eq. 66, which, by applying Lemma 22, becomes (we set ehi, n ≡ 0)

$$ (\forall n\in{\mathbb N})\quad \begin{array}{l} \left\lfloor \begin{array}{l} \text{For every } h\in C \text{and} i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} y_{1hi,n}=x_{hi,n}-\gamma_{n}(b_{h,n}+r_{i,n})\\ p_{1hi,n}=\max\left\{\frac{y_{1hi,n}+\gamma_{n} z_{hi}+\frac{2\gamma_{n}I_{h}H_{h}}{\alpha S_{i}T}}{1+\frac{2\gamma_{n}I_{h}}{\alpha {S_{i}^{2}}}},0\right\} \end{array} \right. \end{array}\\ \text{For every } h\in C\\ \begin{array}{l} \left\lfloor \begin{array}{l} p_{2h,n}=b_{h,n}+\gamma_{n}\left( {\sum}_{i\in N}x_{hi,n}-H_{h}\right)\\ b_{h,n + 1}=b_{h,n}+\gamma_{n}\left( {\sum}_{i\in N}p_{1hi,n}-H_{h}\right) \end{array} \right. \end{array}\\ \text{For every } i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} p_{2i,n}=r_{i,n}+\gamma_{n}\left( {\sum}_{h\in C}x_{hi,n}-S_{i}\right)\\ r_{i,n + 1}=r_{i,n}+\gamma_{n}\left( {\sum}_{h\in C}p_{1hi,n}-S_{i}\right) \end{array} \right. \end{array}\\ \text{For every } h\in C \text{and} i\in N\\ \begin{array}{l} \left\lfloor \begin{array}{l} q_{1hi,n}=p_{1hi,n}-\gamma_{n}(p_{2h,n}+p_{2i,n})\\ x_{hi,n + 1}=x_{hi,n}-y_{1hi,n}+q_{1hi,n}. \end{array} \right. \end{array} \end{array} \right. \end{array} $$
(67)

If the sequence \((\gamma _{n})_{n\in {\mathbb N}}\) is in ]0, (|C| + |N|)− 1/2[, Proposition 7 asserts that, for every hC and iN, the sequence \((x_{hi,n})_{n\in {\mathbb N}}\) converges to some \(x_{hi}^{*}\) and \(\boldsymbol {x}^{*}=(x_{hi}^{*})_{h\in C, i\in N}\) is the solution to Eq. 38 and, additionally, the sequence \((b_{h,n},r_{i,n})_{n\in {\mathbb N}}\) converges to some \((b_{h}^{*},r_{i}^{*})\) and \(((b_{h}^{*})_{h\in C},(r_{i}^{*})_{i\in N})\) is a solution to the associated dual problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño-Arias, L.M., Martínez, F. Short-Term Land use Planning and Optimal Subsidies. Netw Spat Econ 18, 973–997 (2018). https://doi.org/10.1007/s11067-019-09455-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-019-09455-8

Keywords

Navigation