Skip to main content
Log in

Application of Bacterial Thermostable Lipolytic Enzymes in the Modern Biotechnological Processes: A Review

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Review focuses on the modern applications of bacterial lipolytic enzymes in biotechnology and covers the scope of their properties including their activity and functional stability at different temperatures, pH, substrate specificity, and activity in the presence of different chemicals. The recent data on the production of genetically engineered strains producing the bacterial lipolytic enzymes and approaches to improving their productivity are presented. The applications of bacterial lipases in biotechnological processes used in the production of biofuel, chemicals and detergents, in the food industry, and in wastewater treatment are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sorokina, K.N., Samoylova, Y.V., Piligaev, A.V., Sivakumar, U., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 3, pp. 264–269.

    Article  Google Scholar 

  2. Sorokina, K.N., Samoylova, Y.V., Piligaev, A.V., Sivakumar, U., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 4, pp. 348–353.

    Google Scholar 

  3. Samoylova, Y.V., Sorokina, K.N., and Parmon, V.N., Catal. Ind., 2016, vol. 9, no. 1, pp. 62–70.

    Article  Google Scholar 

  4. Samoylova, Y.V., Piligaev, A.V., Sorokina, K.N., and Parmon, V.N., Catal. Ind., 2017, vol. 9, no. 1, pp. 62–70.

    Article  Google Scholar 

  5. Gotovtsev, P.M., Yuzbasheva, E.Yu., Gorin, K.V., Butylin, V.V., Badranova, G.U., Perkovskaya, N.I., Mostova, E.B., Namsaraev, Z.B., Rudneva, N.I., Komova, A.V., Vasilov, R.G., and Sineokii, S.P., Biotekhnol., 2015, no. 2, pp. 33–45.

  6. Yuzbasheva, E.Yu., Gotovtsev, P.M., Mostova, E.B., Perkovskaya, N.I., Lomonosova, M.A., Butylin, V.V., Sineokii, S.P., and Vasilov, R.G., Biotekhnol., 2014, no. 1, pp. 8–24.

  7. Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., and Sumana, C., Biotechnol. Prog., 2018, vol. 34, no. 1, pp. 5–28.

    Article  CAS  PubMed  Google Scholar 

  8. Sorokina, K.N., Samoilova, Yu.V., Piligaev, A.V., Tulupov, A.A., and Parmon, V.N., Primenenie biotekhnologii dlya pererabotki lipidov rastitel’nogo proiskhozhdeniya v tsennye produkty i ikh vliyanie na zdorov’e cheloveka (Application of Biotechnology for the Conversion of Plant-Derived Lipids into Valuable Products and Their Effect on Human Health), Novosibirsk: Novosib. Gos. Univ., 2017.

  9. Khan, F.I., Lan, D., Durrani, R., Huan, W., Zhao, Z., and Wang, Y., Front. Bioeng. Biotechnol., 2017, vol. 5, p. 16. https://doi.org/10.3389/fbioe.2017.00016

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hide, W.A., Chan, L., and Li, W.H., J. Lipid Res., 1992, vol. 33, no. 2, pp. 167–178.

    CAS  PubMed  Google Scholar 

  11. Kapoor, M. and Gupta, M.N., Proc. Biochem., 2012, vol. 47, no. 4, pp. 555–569.

    Article  CAS  Google Scholar 

  12. Bornscheuer, U.T., FEMS Microbiol. Rev., 2002, vol. 26, no. 1, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, L.-C., Lee, Y.-L., Leu, R.-J., and Shaw, J.-F., Biochem. J., 2006, vol. 397, no. 1, pp. 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bharathi, D., Rajalakshmi, G., and Komathi, S., J. King Saud Univ., Sci., 2018. https://doi.org/10.1016/j.jksus.2017.12.018

  15. Samoilova, Yu.V., Tulupov, A.A., and Sorokina, K.N., Vestn. Novosib. Gos. Univ., Ser. Biol. Klin. Med., 2014, vol. 12, no. 4, pp. 77–84.

    Google Scholar 

  16. Sorokina, K.N., Rozanov, A.S., Bryanskaya, A.V., and Pel’tek, S.E., Vavilov. Zh. Genet. Sel., 2013, vol. 17, nos. 4/1, pp. 651–658.

  17. Kim, G.J., Lee, E.G., Gokul, B., Hahm, M.S., Prerna, D., Choi, G.S., Ryu, Y.W., Ro, H.-S., and Chung, B.H., J. Mol. Catal. B: Enzym., 2003, vol. 22, no. 1, pp. 29–35.

    Article  CAS  Google Scholar 

  18. Samoylova, Y.V., Piligaev, A.V., Sorokina, K.N., Rozanov, A.S., Peltek, S.E., Novikov, A.A., Almyasheva, N.R., and Parmon, V.N., Catal. Ind., 2016, vol. 8, no. 2, pp. 187–193.

    Article  Google Scholar 

  19. Nagibina, V.V., Rebezov, M.B., Anokhina, E.S., Maksimyuk, N.N., and Asenova, B.K., Molodoi Uchenyi., 2014, no. 8, pp. 214–216.

  20. Bezborodov, A.M. and Zagustina, N.A., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 313–337.

    Article  CAS  Google Scholar 

  21. Samoylova, Y.V., Sorokina, K.N., Piligaev, A.V., and Parmon, V.N., Catalysts, 2018, vol. 8, no. 4, p. 154.

    Article  CAS  Google Scholar 

  22. Bayoumi, R.A., El-Louboudey, S.S., Sidkey, N.M., and Abd-El-Rahman, M.A., J. Appl. Sci. Res. (Ma’an, Jordan), 2007., vol. 3, no. 12, pp. 1752–1765.

    CAS  Google Scholar 

  23. Chiş, L., Hriscu, M., Bica, A., Toşa, M., Nagy, G., Róna, G., Vértessy, B.G., and Irimie, F.D., J. Gen. Appl. Microbiol., 2013, vol. 59, no. 2, pp. 119–134.

    Article  PubMed  Google Scholar 

  24. Kim, J., Deng, L., Hong, E., and Ryu, Y., Protein Expression Purif., 2015, vol. 116, pp. 90–97.

    Article  CAS  Google Scholar 

  25. Shariff, F.M. and Rahman, R.N.Z.R.A., Basri, M., and Salleh, A.B., Int. J. Mol. Sci., 2011, vol. 12, no. 5, pp. 2917–2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sivaramakrishnan, R. and Muthukumar, K., Appl. Biochem. Biotechnol., 2012, vol. 166, no. 4, pp. 1095–1111.

    Article  CAS  PubMed  Google Scholar 

  27. Xie, Z., Xu, B., Ding, J., Liu, L., Zhang, X., Li, J., and Huang, Z., Biotechnol. Lett., 2013, vol. 35, no. 8, pp. 1283–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohamed, Z.K., Ahmed, M.A., Fetyan, N.A., and Elnagdy, S.M., J. Adv. Res., 2010, vol. 1, no. 2, pp. 145–149.

    Article  Google Scholar 

  29. Surendhiran, D., Sirajunnisa, A.R., and Vijay, M., 3 Biotech, 2015, vol. 5, no. 5, pp. 715–725.

  30. Leow, T.C., Sharif, F.M., Rahman, R.N.Z.R.A., Salleh, A.B., and Basri, M., in Book of Thermostable Lipases, New York: Nova Science Publishers, 2006, pp. 41-61.

    Google Scholar 

  31. Vieille, C. and Zeikus, G.J., Microbiol. Mol. Biol. Rev., 2001, vol. 65, no. 1, pp. 1–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castro-Ochoa, L.D., Rodríguez-Gómez, C., Valerio-Alfaro, G., and Oliart Ros, R., Enzyme Microb. Technol., 2005, vol. 37, no. 6, pp. 648–654.

    Article  CAS  Google Scholar 

  33. Stathopoulou, P.M., Savvides, A.L., Karagouni, A.D., and Hatzinikolaou, D.G., BioMed Res. Int., 2013. https://doi.org/10.1155/2013/703130

  34. Salameh, M.A. and Wiegel, J., Appl. Environ. Microbiol., 2007, vol. 73, no. 23, pp. 7725–7731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kriger, A.V., Dyshlyuk, L.S., Dolganyuk, V.F., Zimina, M.I., and Asyakina, L.K., Fundam. Issled.: Khim. Nauki, 2013, no. 12, pp. 122–126.

  36. Sorokina, K.N., Nuriddinov, M.A., Rozanov, A.S., Ivanisenko, V.A., and Pel’tek, S.E., Vavilovsk. Zh. Genet. Sel., 2013, vol. 17, no. 4/1, pp. 666–674.

  37. Litthauer, D., Ginster, A., van Eeden Skein, E., Enzyme Microb. Technol., 2002, vol. 30, no. 2, pp. 209–215.

    Article  CAS  Google Scholar 

  38. Nawani, N. and Kaur, J., Mol. Cell. Biochem., 2000, vol. 206, no. 1, pp. 91–96.

    Article  CAS  PubMed  Google Scholar 

  39. Gricajeva, A., Bendikienė, V., and Kalėdienė, L., Int. J. Biol. Macromol., 2016, vol. 92, pp. 96–104.

    Article  CAS  PubMed  Google Scholar 

  40. Kaur, G., Singh, A., Sharma, R., Sharma, V., Verma, S., and Sharma, P.K., 3 Biotech, 2016, vol. 6, no. 1, p. 4

  41. Bradoo, S., Saxena, R.K., and Gupta, R., World J. Microbiol. Biotechnol., 1999, vol. 15, no. 1, pp. 87–91.

    Article  Google Scholar 

  42. Ramani, K., Chockalingam, E., and Sekaran, G., J. Ind. Microbiol. Biotechnol., 2010, vol. 37, no. 5, pp. 531–535.

    Article  CAS  PubMed  Google Scholar 

  43. Andersson, R.E., Hedlund, C.B., and Jonsson, U., J. Dairy Sci., 1979, vol. 62, no. 3, pp. 361–367.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma, S. and Kanwar, S.S., Sci. World J., 2014, vol. 2014. https://doi.org/10.1155/2014/625258

  45. Schmidt-Dannert, C., Sztajer, H., Stöcklein, W., Menge, U., Schmid, R.D., Biochim. Biophys. Acta, Lipids Lipid Metab., 1994, vol. 1214, no. 1, pp. 43–53.

    Article  CAS  Google Scholar 

  46. Sugihara, A., Tani, T., and Tominaga, Y., J. Biochem., 1991, vol. 109, no. 2, pp. 211–216.

    CAS  PubMed  Google Scholar 

  47. Hun, C.J., Rahman, R.N.Z.A., Salleh, A.B., and Basri, M., Biochem. Eng. J., 2003, vol. 15, no. 2, pp. 147–151.

    Article  CAS  Google Scholar 

  48. Gumerov, V.M., Mardanov, A.V., Kolosov, P.M., and Ravin, N.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 338–343.

    Article  CAS  Google Scholar 

  49. Macrae, A.R. and Hammond, R.C., Biotechnol. Genet. Eng. Rev., 1985, vol. 3, no. 1, pp. 193–218.

    Article  CAS  Google Scholar 

  50. Balan, A., Ibrahim, D., Abdul Rahim, R., and Ahmad Rashid, F.A., Enzyme Res., 2012, vol. 2012. https://doi.org/10.1155/2012/987523

  51. Bisht, D., Yadav, S.K., and Darmwal, N.S., Braz. J. Microbiol., 2013, vol. 44, no. 4, pp. 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  52. Ekinci, A.P., Dinçer, B., Baltaş, N., and Adıgüzel, A., J. Enzyme Inhib. Med. Chem., 2016, vol. 31, no. 2, pp. 325–331.

    Article  CAS  PubMed  Google Scholar 

  53. Lestari, P., Raharjo, T.J., Matsjeh, S., and Haryadi, W., AIP Conf. Proc., 2016, vol. 1755, no. 1, p. 080003.

    Article  CAS  Google Scholar 

  54. Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G., and Luchai, S., J. Gen. Appl. Microbiol., 1998, vol. 44, no. 2, pp. 139–145.

    Article  CAS  PubMed  Google Scholar 

  55. Jaeger, K.-E., Ransac, S., Dijkstra, B.W., Colson, C., van Heuvel, M., and Misset, O., FEMS Microbiol. Rev., 1994, vol. 15, no. 1, pp. 29–63.

    Article  CAS  PubMed  Google Scholar 

  56. Hassing, G.S., Biochim. Biophys. Acta, Enzymol., 1971, vol. 242, no. 2, pp. 381–394.

    Article  CAS  Google Scholar 

  57. Lanser, A.C., Manthey, L.K., and Hou, C.T., Curr. Microbiol., 2002, vol. 44, no. 5, pp. 336–340.

    Article  CAS  PubMed  Google Scholar 

  58. Kanmani, P., Kumaresan, K., and Aravind, J., Braz. J. Microbiol., 2015, vol. 46, no. 4, pp. 1235–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng J.-Y., Wang J., Zhou S.-S., Li X.-J., Ying X.-X., and Wang, Z., Protein Expression Purif., 2017, vol. 136, pp. 66–72.

    Article  CAS  Google Scholar 

  60. Valero, F., in Lipases and Phospholipases: Methods and Protocols, Sandoval, G., Ed., Totowa, NJ: Humana Press, 2012, pp. 161–178.

    Google Scholar 

  61. Borrelli, G.M. and Trono, D., Int. J. Mol. Sci., 2015, vol. 16, no. 9, pp. 20774–20840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Padkina, M.V. and Sambuk, E.V., Ekol. Genet., 2015, vol. 13, no. 2, pp. 36–57.

    Google Scholar 

  63. Villaverde, A. and Mar Carrió, M., Biotechnol. Lett., 2003, vol. 25, no. 17, pp. 1385–1395.

    Article  CAS  PubMed  Google Scholar 

  64. De Marco, A., Microb. Cell Fact., 2009, vol. 8, no. 1, p. 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Marco, A., Deuerling, E., Mogk, A., Tomoyasu, T., and Bukau, B., BMC Biotechnol., 2007, vol. 7, p. 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saibil, H.R., Curr. Opin. Struct. Biol., 2008, vol. 18, no. 1, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  67. Quyen, D.T., Schmidt-Dannert, C., and Schmid, R.D., Appl. Environ. Microbiol., 1999, vol. 65, no. 2, pp. 787–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui, S.-S., Lin, X.-Z., and Shen, J.-H., Protein Expression Purif., 2011, vol. 77, no. 2, pp. 166–172.

    Article  CAS  Google Scholar 

  69. Datta, S., Christena, L.R., and Rajaram, Y.R.S., 3 Biotech, 2013, vol. 3, no. 1, pp. 1–9.

  70. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Mamaev, A.L., and Patrushev, Yu.V., Catal. Ind., 2018, vol. 10, no. 1, pp. 68–74.

    Article  Google Scholar 

  71. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., and Pykhtina, M.B., Vestn. Permsk. Nats. Issled. Politekh. Univ. Khim. Tekhnol. Biotechnol., 2018, no. 2, pp. 7–22.

  72. Du, W., Xu, Y., Liu, D., and Zeng, J., J. Mol. Catal. B: Enzym., 2004, vol. 30, no. 3, pp. 125–129.

    Article  CAS  Google Scholar 

  73. Gonzalo, A., García, M., Luis Sánchez, J., Arauzo, J., and Peña, J.Á., Ind. Eng. Chem. Res., 2010, vol. 49, no. 9, pp. 4436–4443.

    Article  CAS  Google Scholar 

  74. Salis, A., Pinna, M., Monduzzi, M., and Solinas, V., J. Biotechnol., 2005, vol. 119, no. 3, pp. 291–299.

    Article  CAS  PubMed  Google Scholar 

  75. Sorokina, K.N., Yakovlev, V.A., Piligaev, A.V., Kukushkin, R.G., Pel’tek, S.E., Kolchanov, N.A., and Parmon, V.N., Catal. Ind., 2012, vol. 4, no. 3, pp. 202–208.

    Article  Google Scholar 

  76. Piligaev, A.V., Sorokina, K.N., and Parmon, V.N., Vestn. Novosib. Gos. Univ., Ser. Biol. Klin. Med., 2015, vol. 13, no. 4, pp. 19–26.

    Google Scholar 

  77. Noureddini, H., Gao, X., and Philkana, R.S., Bioresour. Technol., 2005, vol. 96, no. 7, pp. 769–777.

    Article  CAS  PubMed  Google Scholar 

  78. Kim, S.H., Kim, S.-J., Park, S., and Kim, H.K., J. Mol. Catal. B: Enzym., 2013, vols. 85–86, pp. 10–16.

    Article  CAS  Google Scholar 

  79. Winayanuwattikuna, P., Piriyakananona, K., Wongsathonkittikunb, P., and Charoenpanich, J., ScienceAsia, 2014, vol. 40, no. 5, pp. 327–334.

    Article  Google Scholar 

  80. Narwal, S.K., Saun, N.K., Dogra, P., Chauhan, G., and Gupta, R., BioMed Res. Int., 2015, vol. 2015. https://doi.org/10.1155/2015/281934

  81. Cai, X., Ma, J., Wei, D.-Z., Lin, J.-P., Wei, W., Antonie van Leeuwenhoek, 2014, vol. 106, no. 5, pp. 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  82. Kawakami, K., Oda, Y., and Takahashi, R., Biotechnol. Biofuels, 2011, vol. 4, p. 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Abdulla, R. and Ravindra, P., Biomass Bioenergy, 2013, vol. 56, pp. 8–13.

    Article  CAS  Google Scholar 

  84. Li, K., Fan, Y., He, Y., Zeng, L., Han, X., and Yan, Y., Sci. Rep., 2017, vol. 7, no. 1. https://www.nature.com/ articles/s41598-017-16626-5. Cited April 8, 2019.

  85. Godoy, C.A., Int. J. Mol. Sci., 2017, vol. 18, no. 10, p. 2130.

    Article  CAS  PubMed Central  Google Scholar 

  86. Uppada, S.R., Akula, M., Bhattacharya, A., and Dutta, J.R., J. Genet. Eng. Biotechnol., 2017, vol. 15, no. 2, pp. 331–334.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Karra-Châabouni, M., Ghamgui, H., Bezzine, S., Rekik, A., and Gargouri, Y., Process Biochem., 2006, vol. 41, no. 7, pp. 1692–1698.

    Article  CAS  Google Scholar 

  88. Pan, J., Dang, N.-D., Zheng, G.-W., Cheng, B., Ye, Q., and Xu, J.-H., Bioresour. Bioprocess., 2014, vol. 1, p. 12. https://doi.org/10.1186/s40643-014-0012-x

    Article  Google Scholar 

  89. Quax, W.J. and Broekhuizen, C.P., Appl. Microbiol. Biotechnol., 1994, vol. 41, no. 4, pp. 425–431.

    CAS  PubMed  Google Scholar 

  90. Mutsaers, J.H.G.M. and Kooreman, H.J., Recl. Trav. Chim. Pays-Bas, 1991, vol. 110, no. 5, pp. 185–188.

    Article  CAS  Google Scholar 

  91. Steenkamp, L. and Brady, D., Process Biochem., 2008, vol. 43, no. 12, pp. 1419–1426.

    Article  CAS  Google Scholar 

  92. Godinho, L.F., Reis, C.R., Tepper, P.G., Poelarends, G.J., and Quax, W.J., Appl. Environ. Microbiol., 2011, vol. 77, no. 17, pp. 6094–6099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei, T., Yang, K., Bai, B., Zang, J., Yu, X., and Mao, D., Molecules, 2016, vol. 21, no. 7, p. 905. https://doi.org/10.3390/molecules21070905

    Article  CAS  PubMed Central  Google Scholar 

  94. Marszałł, M.P. and Siódmiak, T., Catal. Commun., 2012, vol. 24, pp. 80–84.

    Article  CAS  Google Scholar 

  95. Li, X., Liu, T., Xu, L., Gui, X., Su, F., and Yan, Y., Biotechnol. Bioprocess Eng., 2012, vol. 17, no. 6, pp. 1147–1155.

    Article  CAS  Google Scholar 

  96. Yoon, S., Kim, S., Park, S., Hong, E., Kim, J., Kim, S., Yoo, T.H., and Ryu, Y., J. Mol. Catal. B: Enzym., 2014, vol. 100, pp. 25–31.

    Article  CAS  Google Scholar 

  97. Kim, J., Kim, S., Yoon, S., Hong, E., and Ryu, Y., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 15, pp. 6293–6301.

    Article  CAS  PubMed  Google Scholar 

  98. Wu, H.-Y., Xu, J.-H., Shen, D., and Xin, Q., J. Ind. Microbiol. Biotechnol., 2003, vol. 30, no. 6, pp. 357–361.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, Y. and Pagilla, K., Desalination, 2010, vol. 263, nos. 1–3, pp. 36–44.

    Article  CAS  Google Scholar 

  100. Shayeghi, M., Dehghani, M.H., Alimohammadi, M., and Goodini, K., Iran. J. Arthropod Borne Dis., 2012, vol. 6, no. 1, pp. 45–53.

    CAS  Google Scholar 

  101. Singh, B., Kaur, J., and Singh, K., World J. Microbiol. Biotechnol., 2012, vol. 28, no. 3, pp. 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  102. Kim, Y.-H., Ahn, J.-Y., Moon, S.-H., and Lee, J., Chemosphere, 2005, vol. 60, no. 10, pp. 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  103. Ibrahim, W.M., Karam, M.A., El-Shahat, R.M., and Adway, A.A., BioMed Res. Int., 2014, vol. 2014. https://doi.org/10.1155/2014/392682

  104. More, V.S., Tallur, P.N., Niyonzima, F.N., and More, S.S., 3 Biotech, 2015, vol. 5, no. 6, pp. 967–974.

  105. Talwar, M.P. and Ninnekar, H.Z., J. Basic Microbiol., 2015, vol. 55, no. 9, pp. 1094–1103.

    Article  CAS  PubMed  Google Scholar 

  106. Pailan, S., Gupta, D., Apte, S., Krishnamurthi, S., and Saha, P., Int. Biodeterior. Biodegrad., 2015, vol. 103, pp. 191–195.

    Article  CAS  Google Scholar 

  107. Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., and Zhang, L.-H., Sci. Rep., 2015, vol. 5. https://www.nature.com/articles/ srep08784. Cited April 8, 2019.

  108. Khan, S., Zaffar, H., Irshad, U., Ahmad, R., Khan, A.R., Shah, M.M., Bilal, M., Iqbal, M., and Naqvi, T., Arch. Biol. Sci., 2016, vol. 68, no. 1, pp. 51–59.

    Article  Google Scholar 

  109. Samoylova, Y.V., Sorokina, K.N., Romanenko, M.V., and Parmon, V.N., Extremophiles, 2018, vol. 22, no. 2, pp. 271–285.

    Article  CAS  PubMed  Google Scholar 

  110. Chauhan, M., Chauhan, R.S., and Garlapati, V.K., BioMed Res. Int., 2013, vol. 2013. https://doi.org/10.1155/2013/374967

  111. Joseph, B., Ramteke, P.W., and Thomas, G., Biotechnol. Adv., 2008, vol. 26, no. 5, pp. 457–470.

    Article  CAS  PubMed  Google Scholar 

  112. Kanjanavas, P., Khuchareontaworn, S., Khawsak, P., Pakpitcharoen, A., Pothivejkul, K., Santiwatanakul, S., Matsui, K., Kajiwara, T., and Chansiri, K., Int. J. Mol. Sci., 2010, vol. 11, no. 10, pp. 3783–3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rathi, P., Saxena, R.K., and Gupta, R., Process Biochem., 2001, vol. 37, no. 2, pp. 187–192.

    Article  CAS  Google Scholar 

  114. An, J.D., Patterson, D.A., McNeil, S., and Hossain, M.M., Biotechnol. Prog., 2014, vol. 30, no. 4, pp. 806–817.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was performed as part of a state task for the Boreskov Institute of Catalysis (Siberian Branch, Russian Academy of Sciences), project no. 0303-2016-0012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Samoylova, K. N. Sorokina, A. V. Piligaev or V. N. Parmon.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoylova, Y.V., Sorokina, K.N., Piligaev, A.V. et al. Application of Bacterial Thermostable Lipolytic Enzymes in the Modern Biotechnological Processes: A Review. Catal. Ind. 11, 168–178 (2019). https://doi.org/10.1134/S2070050419020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419020107

Keywords:

Navigation