Skip to main content
Log in

Dependence of Plasmon Spectra of Small Gold Nanoparticles from Their Size: an Atomic Force Microscopy Experimental Approach

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The spectra of small gold nanoparticles (GNPs) were theoretically described following the modified Mie equations and by adopting the Kriebig-Drude model. The experimental dependence of the absorption maximal intensity of small spherical GNPs versus their diameter was compared with a theoretically derived relation. The theoretical description is validated by simultaneously obtained data from UV-Vis plasmon absorption spectra together with the size of GNPs measured by means of atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  Google Scholar 

  2. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  3. Wooten F (1972) Optical properties of solids. Academic Press, London

    Google Scholar 

  4. Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks Cole

  5. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101–085105

    Article  Google Scholar 

  6. Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  7. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  8. Dushkin C, Miwa T, Nagayama K (1998) Gravity effect on the field deposition of two dimensional particle arrays. Chem Phys Lett 285:259–265

    Article  CAS  Google Scholar 

  9. García MA, Llopis J, Paje SE (1999) A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol gel films. Chem Phys Lett 315:313–320

    Article  Google Scholar 

  10. Hens Z, Vanmaekelbergh D, Kooij ES, Wormeester H, Allan G, Delerue C (2004) Effect of quantum confinement on the dielectric function of PbSe. Phys Rev Lett 92(2):0268081–0268084

    Article  Google Scholar 

  11. Losurdo M, Giangregorio M, Bianco G, Suvorova A, Kong C, Rubanov S, Capezzuto P, Humlicek J, Bruno G (2010) Size dependence of the dielectric function of silicon-supported plasmonic gold nanoparticles. Phys Rev B 82:155451–155459

    Article  Google Scholar 

  12. Stoller P, Jacobsen V, Sandoghar V (2006) Measurment of complex dielectric constant of a single gold nanoparticle. Opt Lett 31:2474–2476

    Article  CAS  Google Scholar 

  13. Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249–4252

    Article  CAS  Google Scholar 

  14. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5:515–518

    Article  CAS  Google Scholar 

  15. Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach. Phys Rev B 72:195429

    Article  Google Scholar 

  16. Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11:941–951

    Article  CAS  Google Scholar 

  17. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  18. Tsekov R, Georgiev P, Simeonova S, Balashev K (2017) Quantifying the blue shift in the light absorption of small gold nanoparticles. CR Acad Bulg Sci 70(9):1237–1246

    CAS  Google Scholar 

  19. Georgiev P, Bojinova A, Kostova B, Momekova D, Bjornholm T, Balashev K (2013) Implementing the atomic force microscopy for studing the kinetics of gold nanoparticle’s growth. Colloid Surf A-Physicochem Eng Asp 434(3):154–163

    Article  CAS  Google Scholar 

  20. Georgiev P, Simeonova S, Chanachev A, Michaylov L, Nihtianova D, Balashev K (2016) Acceleration effect of copper (II) ions on the rate of citrate synthesis of gold nanoparticles. Colloids and Surfaces A: Physicochem Eng Asp 494:39–48

    Article  CAS  Google Scholar 

  21. Watzky M, Finke R (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400

    Article  CAS  Google Scholar 

  22. Morris A, Watzky M, Agar J, Finke R (2008) Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s razor” model: the Finke–Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry-US 47(8):2413–2427

    Article  CAS  Google Scholar 

  23. Turkevich J, Stevenson P, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  24. Lide DR (ed) (1996) Handbook of chemistry and physics, 77 edition. CRC Press, Boca Raton, pp 12–130, 12-44

    Google Scholar 

  25. Kriebig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700

    Article  Google Scholar 

  26. Shiang J, Heath J, Collier C, Saykally R (1998) Cooperative phenomena in artificial solids made from silver quantum dots: the importance of classical coupling. J Phys Chem B 102:3425–3430

    Article  CAS  Google Scholar 

Download references

Funding

RT is thankful to the Bulgarian National Science Foundation for financial support via the Grant DRG 02/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Georgiev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiev, P., Simeonova, S., Tsekov, R. et al. Dependence of Plasmon Spectra of Small Gold Nanoparticles from Their Size: an Atomic Force Microscopy Experimental Approach. Plasmonics 15, 371–377 (2020). https://doi.org/10.1007/s11468-019-01034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01034-4

Keywords

Navigation