Skip to main content
Log in

What Is the Effect of Promoter Loading on Alkalized Bimetallic Co–Mo Catalyst for Higher Alcohols Synthesis from Syngas?

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Manganese and nickel co-modified K/Co/MoS2 catalysts supported on graphene were prepared by incipient wetness impregnation method for application in higher alcohol synthesis (HAS). All catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). The effect of promoters, as well as supports on higher alcohol synthesis production from syngas, was investigated in a fixed bed reactor. The process was performed with an molar ratio H2 : CO = 1 : 1, operating pressure and temperature of 4 MPa and 330°C, respectively, and gas hourly space velocity (GHSV) 3.84 m3(STP)/(kgcat h) as reaction conditions (STP— standard temperature and pressure). Results originated from practical works showed that the addition of Ni to the graphene-based catalyst increased HAS production and decreased methanol formation. The total alcohols space-time yield (STY) and alcohol selectivity on Ni/Mn/Co/Mo/K/graphene catalyst reached a maximum at 0.41 galc/(gcat h) and 63.51%, respectively, which is higher than the same composition over alumina supported catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Boahene, P.E. and Dalai, A.K., Ind. Eng. Chem. Res., 2017, vol. 56, no. 46, pp. 13552–13565.

    Article  CAS  Google Scholar 

  2. Calverley, E.M. and Anderson, R.B., J. Catal., 1987, vol. 104, no. 2, pp. 434–440.

    Article  CAS  Google Scholar 

  3. Luk, H.T., Mondelli, C., Ferré, D.C., Stewart, J.A., and Pérez-Ramírez, J., J. Chem. Soc. Rev., 2017, vol. 46, no. 5, pp. 1358–1426.

    Article  CAS  Google Scholar 

  4. Hasty, J.K., Ponnurangam, S., Turn, S., Somasundaran, P., Kim, T., and Mahajan, D., Fuel, 2016, vol. 164, pp. 339–346.

    Article  CAS  Google Scholar 

  5. Kiai, R.M., Tavasoli, A., and Karimi, A., React. Kinet. Mech. Catal., 2016, vol. 117, no. 1, pp. 173–188.

    Article  CAS  Google Scholar 

  6. Surisetty, V.R., Dalai, A.K., and Kozinski, J., Appl. Catal., A, 2010, vol. 385, nos. 1–2, pp. 153–162.

  7. Li, H., Zhang, W., Wang, Y., Shui, M., Sun, S., Bao, J., and Gao, C., J. Energy Chem., 2019, vol. 30, pp. 57–62.

    Article  Google Scholar 

  8. Qi, H., Li, D., Yang, C., Ma, Y., Li, W., Sun, Y., and Zhong, B., Catal. Commun., 2003, vol. 4, no. 7, pp. 339–342.

    Article  CAS  Google Scholar 

  9. Fujimoto, K. and Oba, T., Appl. Catal., 1985, vol. 13, no. 2, pp. 289–293.

    Article  CAS  Google Scholar 

  10. Li, D., Yang, C., Zhao, N., Qi, H., Li, W., Sun, Y., and Zhong, B., Fuel Process. Technol., 2007, vol. 88, no. 2, pp. 125–127.

    Article  CAS  Google Scholar 

  11. Gholipour-Ranjbar, H., Ganjali, M.R., Norouzi, P., and Naderi, H.R., Mater. Res. Express, 2016, vol. 3, no. 7, p. 075501. https://doi.org/10.1088/2053-1591/3/7/075501

  12. Salimi, M., Tavasoli, A., Balou, S., Hashemi, H., and Kohansal, K., Appl. Catal., B, 2018, vol. 239, pp. 383–397.

    Article  CAS  Google Scholar 

  13. Julkapli, N.M. and Bagheri, S., Int. J. Hydrogen Energy, 2015, vol. 40, no. 2, pp. 948–979.

    Article  CAS  Google Scholar 

  14. Abdolhosseinzadeh, S., Asgharzadeh, H., and Kim, H.S., Sci. Rep., 2015, vol. 5. https://www.nature.com/articles/ srep10160.pdf. Cited July 7, 2019.

  15. Zhao, C., Chou, S.-L., Wang, Y., Zhou, C., Liu, H.-K., and Dou, S.-X., RSC Adv., 2013, vol. 3, no. 37, pp. 16597–16603.

    Article  CAS  Google Scholar 

  16. Morrill, M.R., Thao, N.T., Shou, H., Davis, R.J., Barton, D.G., Ferrari, D., Agrawal, P.K., and Jones, C.W., ACS Catal., 2013, vol. 3, no. 7, pp. 1665–1675.

    Article  CAS  Google Scholar 

  17. Li, D., Yang, C., Qi, H., Zhang, H., Li, W., Sun, Y., and Zhong, B., Catal. Commun., 2004, vol. 5, no. 10, pp. 605–609.

    Article  CAS  Google Scholar 

  18. Surisetty, V.R., Hu, Y., Dalai, A.K., and Kozinski, J., Appl. Catal., A, 2011, vol. 392, nos. 1–2, pp. 166–172.

  19. Fu, Y.L., Fujimoto, K., Lin, P.Y., Omata, K., and Yu, Y.S., Appl. Catal., A, 1995, vol. 126, no. 2, pp. 273–285.

  20. Iranmahboob, J., Toghiani, H., and Hill, D.O., Appl. Catal., A, 2003, vol. 247, no. 2, pp. 207–218.

  21. Surisetty, V.R., Eswaramoorthi, I., and Dalai, A.K., Fuel, 2012, vol. 96, pp. 77–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Gholami Moqadam, Ahmad Tavasoli or Mohammad Salimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza Gholami Moqadam, Tavasoli, A. & Salimi, M. What Is the Effect of Promoter Loading on Alkalized Bimetallic Co–Mo Catalyst for Higher Alcohols Synthesis from Syngas?. Catal. Ind. 11, 208–215 (2019). https://doi.org/10.1134/S2070050419030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419030085

Keywords:

Navigation