Skip to main content
Log in

Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:W7–13

  • Anthony RM, Nimmerjahn F (2011) The role of differential IgG glycosylation in the interaction of antibodies with FcgammaRs in vivo. Curr Opin Organ Transplant 16:7–14

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2015) GenBank. Nucleic Acids Res 43:D30–D35

    Article  CAS  PubMed  Google Scholar 

  • Bloom JW, Madanat MS, Marriott D, Wong T, Chan SY (1997) Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci 6:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, Bharadwaj P, Hards R, Adamo ME, Gerber SA, Cocklin SL, Schmitz JE, Miles AR, Eckman JW, Belli AJ, Reimann KA, Ackerman ME (2016) Biophysical and functional characterization of rhesus macaque IgG subclasses. Front Immunol 7:589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusco A, Carbonara AO, Crovella S, Bottaro A (1998) Primate immunoglobulin heavy chain constant gamma genes: an hypothesis of their evolution. Hum Evol 13:49–56

    Article  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

    Article  CAS  PubMed  Google Scholar 

  • Cadavid LF (2009) The evolution of complex systems: the case of the immune system in animals. Acta Biolo Colomb 14:247–254

    Google Scholar 

  • Cadavid LF, Lun CM (2009) Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics 61:27–41

    Article  CAS  PubMed  Google Scholar 

  • Cadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI (1997) Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proc Natl Acad Sci U S A 94:14536–14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadavid LF, Palacios C, Lugo JS (2013) Bimodal evolution of the killer cell Ig-like receptor (KIR) family in New World primates. Immunogenetics 65:725–736

    Article  CAS  PubMed  Google Scholar 

  • Capra JD, Tucker PW (1989) Human immunoglobulin heavy chain genes. J Biol Chem 264:12745–12748

    CAS  PubMed  Google Scholar 

  • Carvalho LJ, Alves FA, Bianco C Jr, Oliveira SG, Zanini GM, Soe S, Druilhe P, Theisen M, Muniz JA, Daniel-Ribeiro CT (2005) Immunization of Saimiri sciureus monkeys with a recombinant hybrid protein derived from the plasmodium falciparum antigen glutamate-rich protein and merozoite surface protein 3 can induce partial protection with Freund and Montanide ISA720 adjuvants. Clin Diagn Lab Immunol 12:242–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo F, Guerrero C, Trujillo E, Delgado G, Martinez P, Salazar LM, Barato P, Patarroyo ME, Parra-Lopez C (2004) Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics 56:480–489

    Article  CAS  PubMed  Google Scholar 

  • Chang TW, Wu PC, Hsu CL, Hung AF (2007) Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol 93:63–119

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, Edholm ES, Santini PA, Rath P, Chiu A, Cattalini M, Litzman J, Bussel JB, Huang B, Meini A, Riesbeck K, Cunningham-Rundles C, Plebani A, Cerutti A (2009) Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol 10:889-898

  • Chen JB, Wu PC, Hung AF, Chu CY, Tsai TF, Yu HM, Chang HY, Chang TW (2010) Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells. J Immunol 184:1748–1756

    Article  CAS  PubMed  Google Scholar 

  • Croce CM, Shander M, Martinis J, Cicurel L, D'Ancona GG, Dolby TW, Koprowski H (1979) Chromosomal location of the genes for human immunoglobulin heavy chains. Proc Natl Acad Sci U S A 76:3416–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, Pluschke G, Daubenberger CA (2000a) Sequence and diversity of MHC DQA and DQB genes of the owl monkey Aotus nancymaae. Immunogenetics 51:528–537

    Article  CAS  PubMed  Google Scholar 

  • Diaz OL, Daubenberger CA, Rodriguez R, Naegeli M, Moreno A, Patarroyo ME, Pluschke G (2000b) Immunoglobulin kappa light-chain V, J, and C gene sequences of the owl monkey Aotus nancymaae. Immunogenetics 51:212–218

    Article  CAS  PubMed  Google Scholar 

  • Dobano C, Santano R, Vidal M, Jimenez A, Jairoce C, Ubillos I, Dosoo D, Aguilar R, Williams NA, Diez-Padrisa N, Ayestaran A, Valim C, Asante KP, Owusu-Agyei S, Lanar D, Chauhan V, Chitnis C, Dutta S, Angov E, Gamain B, Coppel RL, Beeson JG, Reiling L, Gaur D, Cavanagh D, Gyan B, Nhabomba AJ, Campo JJ, Moncunill G (2019) Differential patterns of IgG subclass responses to Plasmodium falciparum antigens in relation to malaria protection and RTS,S vaccination. Front Immunol 10:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  • Garzon-Ospina D, Lopez C, Cadavid LF, Patarroyo ME, Patarroyo MA (2013) Identification and diversity of killer cell Ig-like receptors in Aotus vociferans, a New World monkey. PLoS One 8:e79731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon-Ospina D, Forero-Rodriguez J, Patarroyo MA (2016) Evidence of functional divergence in MSP7 paralogous proteins: a molecular-evolutionary and phylogenetic analysis. BMC Evol Biol 16:256

    Article  PubMed  PubMed Central  Google Scholar 

  • He WQ, Shakri AR, Bhardwaj R, Franca CT, Stanisic DI, Healer J, Kiniboro B, Robinson LJ, Guillotte-Blisnick M, Huon C, Siba P, Cowman A, King CL, Tham WH, Chitnis CE, Mueller I (2019) Antibody responses to plasmodium vivax Duffy binding and erythrocyte binding proteins predict risk of infection and are associated with protection from clinical malaria. PLoS Negl Trop Dis 13:e0006987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heads M (2010) Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. Zool Scr 39:20

    Article  Google Scholar 

  • Hedges SB, Marin J, Suleski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez EC, Suarez CF, Mendez JA, Echeverry SJ, Murillo LA, Patarroyo ME (2002) Identification, cloning, and sequencing of different cytokine genes in four species of owl monkey. Immunogenetics 54:645–653

    Article  CAS  PubMed  Google Scholar 

  • Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423:614–620

    Article  CAS  PubMed  Google Scholar 

  • Herrera S, Perlaza BL, Bonelo A, Arevalo-Herrera M (2002) Aotus monkeys: their great value for anti-malaria vaccines and drug testing. Int J Parasitol 32:1625–1635

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Hughes MK, Howell CY, Nei M (1994) Natural selection at the class II major histocompatibility complex loci of mammals. Philos Trans R Soc Lond Ser B Biol Sci 346:359–366 discussion 366-7

    Article  CAS  Google Scholar 

  • Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913

    Article  CAS  PubMed  Google Scholar 

  • Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin MG (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166:2571–2575

    Article  CAS  PubMed  Google Scholar 

  • Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS (2015) Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 67:171–182

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen FW, Padaki R, Morris AE, Aldrich TL, Armitage RJ, Allen MJ, Lavallee JC, Arora T (2011) Molecular and functional characterization of cynomolgus monkey IgG subclasses. J Immunol 186:341–349

    Article  CAS  PubMed  Google Scholar 

  • Jordan-Villegas A, Perdomo AB, Epstein JE, Lopez J, Castellanos A, Manzano MR, Hernandez MA, Soto L, Mendez F, Richie TL, Hoffman SL, Arevalo-Herrera M, Herrera S (2011) Immune responses and protection of Aotus monkeys immunized with irradiated plasmodium vivax sporozoites. Am J Trop Med Hyg 84:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jukes, Cantor (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kennedy RC, Shearer MH, Hildebrand W (1997) Nonhuman primate models to evaluate vaccine safety and immunogenicity. Vaccine 15:903–908

    Article  CAS  PubMed  Google Scholar 

  • Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J (2016) The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 7:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008

    Article  PubMed  PubMed Central  Google Scholar 

  • Krakauer DC, Nowak MA (1999) Evolutionary preservation of redundant duplicated genes. Semin Cell Dev Biol 10:555–559

    Article  CAS  PubMed  Google Scholar 

  • Kriener K, O'HUigin C, Klein J (2000a) Alu elements support independent origin of prosimian, platyrrhine, and catarrhine Mhc-DRB genes. Genome Res 10:634–643

    Article  CAS  PubMed  Google Scholar 

  • Kriener K, O'HUigin C, Tichy H, Klein J (2000b) Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics 51:169–178

    Article  CAS  PubMed  Google Scholar 

  • Kriener K, O'HUigin C, Klein J (2001) Independent origin of functional MHC class II genes in humans and New World monkeys. Hum Immunol 62:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lugo JS, Cadavid LF (2015) Patterns of MHC-G-like and MHC-B diversification in New World monkeys. PLoS One 10:e0131343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaelsen TE, Sandlie I, Bratlie DB, Sandin RH, Ihle O (2009) Structural difference in the complement activation site of human IgG1 and IgG3. Scand J Immunol 70:553–564

    Article  CAS  PubMed  Google Scholar 

  • Miller MA PW, Schwartz T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA. p. 1–8

  • Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, Passarotti M, Kaufman S, O'Leary MA (2015) A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol Bioinformatics Online 11:43–48

    CAS  Google Scholar 

  • Moi ML, Ami Y, Muhammad Azami NA, Shirai K, Yoksan S, Suzaki Y, Kitaura K, Lim CK, Saijo M, Suzuki R, Takasaki T, Kurane I (2017) Marmosets (Callithrix jacchus) as a non-human primate model for evaluation of candidate dengue vaccines: induction and maintenance of specific protective immunity against challenges with clinical isolates. J Gen Virol 98:2955–2967

    Article  CAS  PubMed  Google Scholar 

  • Moncada CA, Guerrero E, Cardenas P, Suarez CF, Patarroyo ME, Patarroyo MA (2005) The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics 57:42–52

    Article  CAS  PubMed  Google Scholar 

  • Montoya GE, Vernot JP, Patarroyo ME (2004) Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans. Tissue Antigens 64:165–172

    Article  CAS  PubMed  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nicholas K, Nicholas H (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments

  • Olivieri DN, Gambon Deza F (2018) Immunoglobulin genes in primates. Mol Immunol 101:353–363

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Davis FM, Sun LK, Liou RS, Kim YW, Chang TW (1992) A new isoform of human membrane-bound IgE. J Immunol 148:129–136

    CAS  PubMed  Google Scholar 

  • Plomp R, Dekkers G, Rombouts Y, Visser R, Koeleman CA, Kammeijer GS, Jansen BC, Rispens T, Hensbergen PJ, Vidarsson G, Wuhrer M (2015) Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Mol Cell Proteomics 14:1373–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin SA (2010) Correlates of protection induced by vaccination. Clin Vaccine Immunol 17:1055–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin SA, Orenstein WA, Offit PA (2017) Plotkin’s vaccines

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ramesh A, Darko S, Hua A, Overman G, Ransier A, Francica JR, Trama A, Tomaras GD, Haynes BF, Douek DC, Kepler TB (2017) Structure and diversity of the rhesus macaque immunoglobulin loci through multiple de novo genome assemblies. Front Immunol 8:1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Sa JM, Kaslow SR, Krause MA, Melendez-Muniz VA, Salzman RE, Kite WA, Zhang M, Moraes Barros RR, Mu J, Han PK, Mershon JP, Figan CE, Caleon RL, Rahman RS, Gibson TJ, Amaratunga C, Nishiguchi EP, Breglio KF, Engels TM, Velmurugan S, Ricklefs S, Straimer J, Gnadig NF, Deng B, Liu A, Diouf A, Miura K, Tullo GS, Eastman RT, Chakravarty S, James ER, Udenze K, Li S, Sturdevant DE, Gwadz RW, Porcella SF, Long CA, Fidock DA, Thomas ML, Fay MP, Sim BKL, Hoffman SL, Adams JH, Fairhurst RM, Su XZ, Wellems TE (2018) Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. Proc Natl Acad Sci U S A 115:12513–12518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saul L, Josephs DH, Cutler K, Bradwell A, Karagiannis P, Selkirk C, Gould HJ, Jones P, Spicer JF, Karagiannis SN (2014) Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency. MAbs 6:509–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41–S52

    Article  PubMed  PubMed Central  Google Scholar 

  • Scinicariello F, Engleman CN, Jayashankar L, McClure HM, Attanasio R (2004) Rhesus macaque antibody molecules: sequences and heterogeneity of alpha and gamma constant regions. Immunology 111:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scopel KK, Fontes CJ, Ferreira MU, Braga EM (2006) Factors associated with immunoglobulin G subclass polarization in naturally acquired antibodies to Plasmodium falciparum merozoite surface proteins: a cross-sectional survey in Brazilian Amazonia. Clin Vaccine Immunol 13:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senger K, Hackney J, Payandeh J, Zarrin AA (2015) Antibody isotype switching in vertebrates. Results Probl Cell Differ 57:295–324

    Article  CAS  PubMed  Google Scholar 

  • Shander M, Martinis J, Croce CM (1980) Genetics of human immunoglobulins: assignment of the genes for mu, alpha, and gamma immunoglobulin chains to human chromosome 14. Transplant Proc 12:417–420

    CAS  PubMed  Google Scholar 

  • Sierra AY, Barrero CA, Rodriguez R, Silva Y, Moncada C, Vanegas M, Patarroyo MA (2003) Splenectomised and spleen intact Aotus monkeys’ immune response to Plasmodium vivax MSP-1 protein fragments and their high activity binding peptides. Vaccine 21:4133–4144

    Article  CAS  PubMed  Google Scholar 

  • Sincock SA, Hall ER, Woods CM, O'Dowd A, Poole ST, McVeigh AL, Nunez G, Espinoza N, Miller M, Savarino SJ (2016) Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates. Vaccine 34:284–291

    Article  CAS  PubMed  Google Scholar 

  • Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez CF, Patarroyo ME, Trujillo E, Estupinan M, Baquero JE, Parra C, Rodriguez R (2006) Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics 58:542–558

    Article  CAS  PubMed  Google Scholar 

  • Sumiyama K, Saitou N, Ueda S (2002) Adaptive evolution of the IgA hinge region in primates. Mol Biol Evol 19:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Ueda S, Obata M, Nikaido T, Nakai S, Honjo T (1982) Structure of human immunoglobulin gamma genes: implications for evolution of a gene family. Cell 29:671–679

    Article  CAS  PubMed  Google Scholar 

  • Tongren JE, Drakeley CJ, McDonald SL, Reyburn HG, Manjurano A, Nkya WM, Lemnge MM, Gowda CD, Todd JE, Corran PH, Riley EM (2006) Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun 74:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trtkova K, Kupfermann H, Grahovac B, Mayer WE, O'HUigin C, Tichy H, Bontrop R, Klein J (1993) Mhc-DRB genes of platyrrhine primates. Immunogenetics 38:210–222

    Article  CAS  PubMed  Google Scholar 

  • Trtkova K, Mayer WE, O'Huigin C, Klein J (1995) Mhc-DRB genes and the origin of New World monkeys. Mol Phylogenet Evol 4:408–419

    Article  CAS  PubMed  Google Scholar 

  • Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JM, Vallender EJ (2012) The resurgence and genetic implications of New World primates in biomedical research. Trends Genet 28:586–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warncke M, Calzascia T, Coulot M, Balke N, Touil R, Kolbinger F, Heusser C (2012) Different adaptations of IgG effector function in human and nonhuman primates and implications for therapeutic antibody treatment. J Immunol 188:4405–4411

    Article  CAS  PubMed  Google Scholar 

  • Weaver R, Reiling L, Feng G, Drew DR, Mueller I, Siba PM, Tsuboi T, Richards JS, Fowkes FJI, Beeson JG (2016) The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep 6:33094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol

  • Woof JM, Burton DR (2004) Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4:89–99

    Article  CAS  PubMed  Google Scholar 

  • Woof JM, Kerr MA (2004) IgA function--variations on a theme. Immunology 113:175–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woof JM, Mestecky J (2005) Mucosal immunoglobulins. Immunol Rev 206:64–82

    Article  CAS  PubMed  Google Scholar 

  • Wu PC, Chen JB, Kawamura S, Roos C, Merker S, Shih CC, Hsu BD, Lim C, Chang TW (2012) The IgE gene in primates exhibits extraordinary evolutionary diversity. Immunogenetics 64:279–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95:3708–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Heidy Catalina Bautista Rodríguez, Gisselle Rivera Cardenas, Marcela Castaño Rodriguez, and Gypsy Bonny Español for reviewing the manuscript.

Funding

This work was supported by the Fundación Scient. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Garzón-Ospina or Sindy P. Buitrago.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Material 1

Igh gene sequences identified within primates contigs used in this study. (TXT 184 kb)

Supplementary Material 2

Phylogenetic tree forIghγexons. The tree was inferred using the Bayesian method based on the GTR + G evolutionary model to assess the phylogenetic closeness of the exons. The Platyrrhines sequences were collapsed. Branches corresponding to each exon are depicted in colors: Exon 1: purple, Exon 2: blue, Exon 3: fuchsia, and Exon 4: green. Numbers on branches represent posterior probability values. Only posterior probability values higher than 0.85 are shown. Posterior probability values for Catarrhine exon 2 were higher than 0.70 but lower than 0.85. (PNG 432 kb)

High resolution image (TIF 1365 kb)

Supplementary Material 3

Sliding window for omega (ω = KN/KS) rate throughout primatesIghgenes. A color line represents the divergence rates (KN/KS) for each of the Igh genes, μ: orange, δ: purple, γ: green, ε: fuchsia and α: blue. Stars represent the gene regions with sites evolving under episodic positive selection. The discontinuity of some lines is due to InDels within the sequence alignment. (PNG 348 kb)

High resolution image (TIF 1200 kb)

Supplementary Material 4

Phylogenies analyzed for episodic selection. Each Igh gene cluster was analyzed using the adaptive Branch-Site Random Effects Likelihood (aBSREL) method. The red box size on branches represents the percentage of codons involved in episodic positive selection found by aBSREL. Branches have been classified as undergoing episodic diversifying selection by its p value and corrected for multiple testing using the Holm-Bonferroni method (p < 0.01). (a) μ gene; (b) δ gene; (c) γ gene; (d) ε gene; (e) α gene. (PDF 695 kb)

Supplementary Material 5

Hosa γupstream and downstream DNA fragments alignments. Upstream and downstream DNA fragments from γ genes were aligned to identify their closeness. Identity values were also estimated. Identity values obtained from the comparisons between γ upstream and downstream DNA fragments showed that the values obtained between γ4 and the other genes were the highest. (a) Hosa γ2 and γ4 duplicated fragment alignment (b) Hosa γ2, γ4, and γ3 duplicated fragment alignment (c) Hosa γ2, γ3, γ4, and Ψγ duplicated fragment alignment (d) upstream and downstream DNA fragment alignment for Hosa Ψγ and γ genes. (PDF 1802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzón-Ospina, D., Buitrago, S.P. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 72, 165–179 (2020). https://doi.org/10.1007/s00251-019-01151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-019-01151-8

Keywords

Navigation