Skip to main content

Advertisement

Log in

A New Species of Agriotherium from North America, and Implications for Understanding Transformations in the Metaconid-Entoconid Complex of Bears

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

New material of Agriotherium from the late Hemphillian (~6 Ma) Quiburis Formation in Arizona, North America is reported. These specimens represent a new species, Agriotherium hendeyi, sp. nov., of small size and with a bucco-lingually narrow lower dentition distinguishing it from North American “Agriotheriumschneideri as well as the genotype and other Old World species of Agriotherium. Strikingly, the m1 metaconid-entoconid complex of the new species exhibits a morphologically transitional state between the pattern observed in Indarctos (three cusps) and the typical Agriotherium pattern (two cusps). Together with a review of the variation in A. africanum, a geometric morphometric analysis permits identification and discussion of a proposed transformation pathway from the Indarctos pattern to the Agriotherium pattern. It is shown that the two cusps in the metaconid-entoconid complex in Agriotherium correspond to the two entoconids in Indarctos, whereas the ancestral metaconid is reduced or lost in Agriotherium. From a developmental perspective, the metaconid fused to the anterior entoconid as a result of the shortening of the talonid, rather than via replacement of the metaconid by a posterior shift of the entoconid, presumably under selective pressure towards a more typically hypercarnivorous tooth morphology and carnivorous diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMNH:

American Museum of Natural History, New York, USA

AMNH F:

AM Frick collection (Fossil Mammals), Division of Paleontology, AMNH, USA

AMNH M:

Mammalogy (Vertebrate Zoology) collections, AMNH, USA

IVPP:

Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China

L:

Specimens housed in Iziko South African Museum, Cape Town, South Africa

P/p:

upper/lower premolar

M/m:

upper/lower molar

Hh3:

Hemphillian3, late Hemphillian North American Land Mammal Age (NALMA)

Hh4:

Hemphillian4, latest Hemphillian NALMA

MN:

Neogene land Mammal Zones of Europe

References

  • Adams DC, Otarola-Castillo E (2013) Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4(4): 393–399

  • Bowdich TE (1821) An Analysis of the Natural Classification of Mammalia, for Use of Students and Travelers. J. Smith, Paris

  • Butler PM (1937) Studies of the mammalian dentition.–I. The teeth of Centetes ecaudatus and its allies. Proc Zool Soc Lond 107(1): 103–132

  • Butler PM (1939) Studies of the mammalian dentition.–Differentiation of the post-canine dentition. Proc Zool Soc Lond 109(1): 1–36

  • Cautley C, Falconer H (1836) Note on the Ursus sivalensis, a new fossil species from Siwalik Hills. Asiat Res 19: 193–200

  • Colbert EH (1935) Siwalik mammals in the American Museum of Natural History. Am Philos Soc 26: 1–401

  • Dalquest WW (1986) Lower jaw and dentition of the Hemphillian bear, Agriotherium (Ursidae), with the description of a new species. J Mammal 67(4): 623–631

  • de Bonis L, Abella J, Merceron G, Begun DR (2017) A new late Miocene ailuropodine (giant panda) from Rudabánya (north-central Hungary). Geobios 50(5): 413–421

  • Evans AR, Daly ES, Catlett KK, Paul KS, King SJ, Skinner MM, Nesse HP, Hublin JJ, Townsend GC, Schwartz GT (2016) A simple rule governs the evolution and development of hominin tooth size. Nature 530(7591): 477

  • Fischer [de Waldheim] G (1814) Zoognosia tabulis synopticis illustrata. Nicolai Sergeidis Vsevolozsky, Moscow

  • Frick C (1921) Extinct vertebrate faunas of the badlands of Bautista Creek and San Timoteo Canon, southern California. Univ Calif Publ Geol 12(5): 277–242

  • Frick C (1926) The Hemicyoninae and an American Tertiary bear. Bull Am Mus Nat Hist 56(1): 1883–1965

  • Frick C (1937) Horned ruminants of North America. Bull Am Mus Nat Hist 69: 1–669

  • Gervais P (1853) Sur une grande espèce de Mammifères carnassiers, qui est fossile dans le terrain pliocène de Montpellier. C R Hebd Séances Acad Sci 37(9): 353–355

  • Gervais P (1859) Zoologie et paléontologie françaises: nouvelles recherches sur les animaux vertébrés dont on trouve les ossements enfouis dans le sol de la France et sur leur comparaison avec les espèces propres aux autres régions du globe. Arthus Bertrand, Paris

  • Ginsburg L, Morales J (1998) Les Hemicyoninae (Ursidae, Carnivora, Mammalia) et les formes apparentées du Miocène inférieur et moyen d'Europe occidentale. Ann Paléontol 84(1): 71–123

  • Hendey QB (1972) A Pliocene ursid from South Africa. Ann So Afr Mus 59: 115–132

  • Hendey QB (1980) Agriotherium (Mammalia, Ursidae) from Langebaanweg, South Africa, and relationships of the genus. Ann So Afr Mus 81: 1–109

  • Hunt RM Jr (1998) Ursidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary Mammals of North America. Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge, pp 174–195

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Develop 92(1): 19–29

  • Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139(19): 3487–3497

  • Kavanagh KD, Evans AR, Jernvall J (2007) Predicting evolutionary patterns of mammalian teeth from development. Nature 449(7161): 427–432

  • Lydekker R (1884) Indian Tertiary and post-Tertiary Vertebrata. Part VI. Siwalik and Narbada Carnivora. Mem Geol Surv India, Palaeontol Indica serie 10 2: 178–351.

  • Miller WE, Carranza-Castaóeda O (1996) Agriotherium schneideri from the Hemphillian of Central Mexico. J Mammal 77(2): 568–577

  • Morales J, Aguirre E (1976) Carnívoros de Venta del Moro. Trabajos sobre Neógeno-Cuaternario 5: 31–81

  • Morales J, Pickford M, Soria D (2005) Carnivores from the late Miocene and basal Pliocene of the Tugen Hills, Kenya. Rev Soc Geol Esp 18(1–2): 39–61

  • Nanda A (2008) Comments on the Pinjor mammalian Fauna of the Siwalik group in relation to the post-Siwalik faunas of peninsular India and Indo-Gangetic plain. Quaternary Internatl 192(1): 6–13

  • Petter G, Thomas H (1986) Les Agriotheriinae (Mammalia, Carnivora) néogènes de l'Ancien Monde présence du genre Indarctos dans la faune de Menacer (Ex-Marceau), Algérie. Geobios 19(5): 573–586

  • Pilgrim GE (1913) Correlation of the Siwaliks with mammal horizons of Europe. Rec Geol Surv India 43: 1–264

  • Pilgrim GE (1914) Further description of Indarctos salmontanus Pilgrim, the new genus of bear from the middle Siwaliks, with some remarks on the fossil indian Ursidae. Rec Geol Surv India 44: 225–233

  • Pispa J, Jung H-S, Jernvall J, Kettunen P, Mustonen T, Tabata MJ, Kere J, Thesleff I (1999) Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol 216(2): 521–534.

  • Qui ZX, Deng T, Wang BY (2014) A late Miocene Ursavus skull from Guanghe, Gansu, China. Vertebr PalAsiat 52(3): 265–302

  • Qiu ZX, Schmidt-Kittler N (1983) Agriotherium intermedium (Stach 1957) from a Pliocene fissure filling of Xiaoxian County (Anhuei Province, China) and the phylogenetic position of the genus. Palaeovertebrata 13(3): 65–81

  • Qiu ZX, Xie JY, Yan Df (1991) Discovery of late Miocene Agriotherium from Jiegou, Gansu, and its taxonomic implications. Vertebr PalAsiat 29(4): 286–295

  • R Development Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  • Rabeder G (1999) Die Evolution des Höhlenbärengebisses. Mitteilung der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 11: 1–102

  • Renaud S, Auffray JC, Michaux J (2006) Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution 60(8): 1701–1717

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50(5): 1766–1774

  • Schluter D (2000) The Ecology of Adaptive Radiation. Oxford University Press, New York

  • Sellards EH (1916) Fossil vertebrates from Florida: a new Miocene fauna; new Pliocene species; the Pleistocene fauna. Fla Geol Surv 8th Annu Rep: 77–119

  • Stach J (1957) Agriotherium intermedium n. sp. from the Pliocene bone breccia of Weze. Acta Palaeontol Pol 2(1): 1–18

  • Stehlin HG (1907) Les Types du Lophiodon de Montpellier de Cuvier (Hyaenarctos insignis P. Gerv.). Bull Soc Géol Fr 7: 219–223

  • Tedford RH, Albright LB III, Barnoskey AD, Ferrusquia-Villafranca I, Hunt RM Jr, Storer JE, Swisher CC III, Voorhies MR, Webb SD, Whistler DP (2004) Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene epochs). In: Woodburne M (ed) Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. Columbia University Press, New York, pp 169–231

  • Van der Made J, Morales J, Montoya P (2006) Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian salinity crisis. Palaeogeogr Palaeoclimatol Palaeoecol 238(1): 228–246

  • Viret J (1939) Monographie paléontologique de la Faune de Vertébrés des Sables de Montpellier: III Carnirora Fissipedia. Travaux du Laboratoire de Géologie de la Faculté des Sciences de Lyon, 37(2): 7–26

  • Wagner A (1837) Gelehrte Anzeigen herausgegeben von Mitgliedern der K. Bayer, Akadamie Wissenschaften Müchen. Palaeontol Abh 5: 334–335

  • Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer, New York

Download references

Acknowledgements

We thank A. Valenciano from the Iziko South African Museum, Cape Town, South Africa for providing photos of A. africanum; and M. Hopkins, W. Harcourt-Smith, and A. Watanabe for guiding the geometric morphometric analysis. We also thank J. Meng, R. O’Leary, and J. Galkin for their help in accessing the AMNH fossil mammal collections; M. Surovy, E. Hoeger, and S. Ketelsen for their help in accessing the AMNH modern mammal collections; and Z. Qiu and J. Chen for help in accessing fossil collections of the IVPP. We are also thankful to the two reviews’ suggestion, which greatly imporved the quality of the manuscript. The current work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000 and XDA20070203), Key Frontier Science Research Program of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-DQC-22 and GJHZ1885), the National Natural Science Foundation of China (Grant Nos. 41430102, 41872001, 41872005 and 41772018), and China Scholarship Council in award to the senior author (QJ).

Author Contributions Statement

Q.Jiangzuo and J.J.Flynn wrote the main manuscript text and Q.Jiangzuo prepared the geometric morphometric and statistical analyses. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigao Jiangzuo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiangzuo, Q., Flynn, J.J. A New Species of Agriotherium from North America, and Implications for Understanding Transformations in the Metaconid-Entoconid Complex of Bears. J Mammal Evol 27, 775–787 (2020). https://doi.org/10.1007/s10914-019-09480-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09480-x

Keywords

Navigation