Skip to main content

Advertisement

Log in

The large tokamak JT-60: a history of the fight to achieve the Japanese fusion research mission

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Fusion research was driven by the oil shocks in 1970’s and the concern about climate change during 20th century. This paper addressed the scientific research history of JT-60, the tokamak that achieved record fusion performances and opened the way toward the continuous operation of a tokamak fusion reactor through its scientific discoveries. The paper also highlighted technical struggles to improve machine capabilities and to solve technical issues faced during the JT-60 project. The missions of JT-60 were to achieve equivalent energy break-even (Q = PDTequi. / Pheat ≥ 1) and to establish a scientific basis for fusion reactor. The JT-60 made several modifications to reach equivalent break-even condition and continued efforts were made by the JT-60 team to solve critical technical issues during 23 years of research operation. Scientific success of JT-60 led to current ITER projects and the modification of JT-60 to a superconducting tokamak, JT-60SA. This paper is intended to be useful for the future researchers and managers of large-scale project by giving dynamical evolutions and highlighting key players. I dedicate this paper to Hiroshi Kishimoto, who made an outstanding contribution in managing the JT-60 research project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Kishimoto, Road to Fusion Energy: From JT-60 to ITER, May 27, 2005 (in Japanese), unpublished manuscript

  2. R. Herman, Fusion: the Search for Endless Energy (Cambridge University Press, 1990), p. 166

  3. K.M. Young, M. Bell et al., TFTR Initial Operation, Plasma Phys. Contr. Fusion 26, 11 (1984)

    Article  ADS  Google Scholar 

  4. P.H. Rebut et al., First Experiments in JET, Plasma physics and controlled nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 11 (1985)

  5. M. Yoshikawa and the JT-60 Team, Recent Experiments in JT-60, Plasma physics and controlled nuclear fusion research (Proc. 11th Int. Conf. Kyoto, 1986), 1, IAEA, Vienna, 11 (1987)

  6. E. Teller, Peaceful Uses of Fusion, Proc. 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Theoretical and Experimental Aspects of Controlled Nuclear Fusion 31 27, paper P/2410 (1958)

  7. F. Wagner, G. Becker, et al., Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , Phys. Rev. Lett. 49, 1408 (1982)

    Article  ADS  Google Scholar 

  8. F. Wagner, The History of Research into Improved Confinement Regime, in topical collection “Plasma Physics in the 20th century as told by players”, Eur. Phys. J. H, 43, 523 (2018)

  9. A. Kitsunezaki, et al., High-pressure Plasma with High-power NBI Heating in Doublet III Plasma physics and controlled nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 57 (1985)

  10. M. Ohta, T. Abe, N. Akino, et al., Construction and Testing of JT-60, Fusion Eng. Design 5, 27 (1987)

    Article  Google Scholar 

  11. H. Kishimoto, H. Aikawa, A. Oikawa, N. Miya, K. Suzuki, T. Ozeki, T. Tokutake, S. Kunieda, K. Hiruta, R. Hosoda, Construction and Testing of JT-60, Fusion Eng. Design 5, 9 (1987)

    Article  Google Scholar 

  12. H.P. Eubank, J. Bell, et al., Neutral-beam Heating in TFTR – Projections and Initial Results Plasma physics and contr. nuclear fusion research (Proc. 10th Int. Conf. London, 1984), 1, IAEA, Vienna, 303 (1985)

  13. M. Kikuchi, T. Hirayama et al., Incremental Energy Confinement Time During H0 Beam Heating in JT-60, Nucl. Fusion 27, 1239 (1987)

    Article  Google Scholar 

  14. S. Ishida, Y. Koide, et al., Observation of a Fast Beta Collapse during High Poloidal-Beta Discharges in JT-60U, Phys. Rev. Lett 68 1531 (1992)

    Article  ADS  Google Scholar 

  15. J.D. Strachan et al., High-Temperature Plasmas in the Tokamak Fusion Test Reactor, Phys. Rev. Lett. 58, 1004 (1987)

    Article  ADS  Google Scholar 

  16. P.H. Rebut, and the JET Team, Recent JET Results and Future Prospects Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 1, IAEA, Vienna, 27 (1991)

  17. Y. Kamada, T. Ozeki, M. Azumi, Central Magnetohydrodynamic Activity in Pellet-fueled JT-60 Plasmas, Phys. Fluids B 4, 124 (1992)

    Article  ADS  Google Scholar 

  18. M. Kikuchi, T. Ando et al., JT-60 Upgrade Program, Fusion Technology 1, 287 (1989)

    Google Scholar 

  19. M.C. Zarnstorff, M.G. Bell et al., Bootstrap Current in TFTR, Phys. Rev. Lett. 60, 1306 (1988)

    Article  ADS  Google Scholar 

  20. R.J. Bickerton, J.W. Connor, J.B. Taylor, Diffusion Driven Plasma Currents and Bootstrap Tokamak, Nature Physical Science 229, 110 (1971)

    Article  ADS  Google Scholar 

  21. M. Kikuchi, M. Azumi et al., Bootstrap Current During Perpendicular Neutral Injection in JT-60, Nucl. Fusion 30, 343 (1990)

    Article  Google Scholar 

  22. M. Kikuchi, Steady State Tokamak Reactor Based on the Bootstrap Current, Nucl. Fusion 30, 265 (1990)

    Article  Google Scholar 

  23. Y. Seki, M. Kikuchi, T. Ando, Y. Ohara, S. Nishio, et al., The Steady State Tokamak Reactor Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 3, IAEA, Vienna, 473 (1991)

  24. R.W. Conn, F. Najmabadi and the ARIES team, ARIES-I, a Steady-state, First StabilityTokamak Reactor with Enhanced Safety and Environmental Features, Plasma physics and contr. nuclear fusion research (Proc. 13th Int. Conf. Washington, 1990), 3, IAEA, Vienna, 6593 (1991)

  25. S. Tsuji, et al., Observation of the Limiter H Mode in the JT-60 Tokamak with Lower-Hybrid Current Drive, Phys. Rev. Lett. 64, 1023 (1990)

    Article  ADS  Google Scholar 

  26. Y. Ikeda, O. Naito et al., High Power Lower Hybrid Current Drive Experiments in JT-60U, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 415 (1995)

  27. M. Shimada and JT-60 Team, JT-60U High Power Heating Experiments, Plasma physics and contr. nuclear fusion research (Proc. 14th Int. Conf. Würzburg, 1992), 1, IAEA, Vienna, 57 (1993)

  28. M. Kikuchi and JT-60 Team, Recent JT-60U Results Towards Steady State Operation of Tokamaks, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 31 (1995)

  29. H. Tamai, M. Kikuchi, T. Arai, M. Honda, H. Miyata, M. Saidoh, T. Kimura, M. Nagami, M. Shimizu, J. Ohmori, M. Shibui, et al., Stress Analysis for the Crack Observation in Cooling Channels of the Toroidal Field Coils in JT-60U, Fusion Eng. Design 38, 429 (1998)

    Article  Google Scholar 

  30. N. Hosogane, S. Sakurai, K. Shimizu, et al., A Compact W-shaped Pumped Divertor Concept for JT-60U, Plasma physics and controlled nuclear fusion research (Proc. 16th Int. Conf. Montreal, 1996), 3, IAEA, Vienna, 31 (1995)

  31. A. Sakasai, H. Takenaga, N. Hosogane, et al., Steady-State Exhaust of Helium Ash in the W-shaped Divertor of JT-60U, Proc. 17th Fusion Energy Conference, Yokohama, Paper EX6/5

  32. T. Suzuki, S. Ide, et al., Heating and Current Drive by Electron Cyclotron Waves in JT-60U, Nucl. Fusion 44, 699 (2004)

    Article  ADS  Google Scholar 

  33. J.L. Dawson, Some Criteria for a Power Producing Thermonuclear Reactor, Proc. Phys. Soc. B 70, 6 (1957)

    Article  ADS  Google Scholar 

  34. Advisory Committee on Nuclear Fusion, Atomic Energy Commission, National Policy of Future Nuclear Fusion Research and Development, Oct 26, 2005 (In Japanese)

  35. Y. Sakamoto, T. Fujita, S. Ide, A. Isayama, et al., Stationary High Confinement Plasmas with Large Bootstrap Current Fraction in JT-60U, Nucl. Fusion 45, 574 (2005)

    Article  ADS  Google Scholar 

  36. M. Kikuchi, R. Conn, F. Najmabadi, Y. Seki, Recent Directions in Plasma Physics and its Impact on Tokamak Magnetic Fusion Design, Fusion Eng. Design 16, 253 (1991)

    Article  Google Scholar 

  37. M. Kikuchi, Prospect of Stationary Tokamak Reactor, Plasma Phys. Control. Fusion 35, B39 (1993)

    Article  ADS  Google Scholar 

  38. Y. Koide, M. Kikuchi, et al., Internal Transport Barrier on q = 3 Surface and Poloidal Plasma Spin Up in JT-60U High-βp Discharges, Phys. Rev. Lett 72, 3662 (1994)

    Article  ADS  Google Scholar 

  39. Y. Koide, S. Ishida, M. Kikuchi et al., Improved Confinement and Transport Barrier in the JT-60U High βp H Mode, Plasma physics and controlled nuclear fusion research (Proc. 15th Int. Conf. Seville, 1994), 1, IAEA, Vienna, 199 (1995)

  40. P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal Flows in Plasma – a Review, Plasma Phys. Control. Fusion 47, R35 (2005)

    Article  Google Scholar 

  41. H. Biglari, P.H. Diamond, P.W. Terry, Influence of Sheared Poloidal Rotation on Edge Turbulence, Phys. Fluids B 2, 1 (1990)

    Article  ADS  Google Scholar 

  42. T.H. Dupree, Theory of Phase Space Density Granulation in Plasmas, Phys. Fluids 15, 3640 (1972)

    Article  Google Scholar 

  43. T. Boutros-Ghali, T.H. Dupree, Theory of Two-point Correlation Function in a Vlasov Plasma, Phys. Fluids 24, 1839 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Shirai, M. Kikuchi, T. Takizuka, et al., Reduced Transport and Er Shearing in Improved Confinement Regimes in JT-60U, Nucl. Fusion 39, 1713 (1999)

    Article  ADS  Google Scholar 

  45. R. Nazikian, K. Shinohara, G.J. Kramer, et al., Measurement of Turbulence Decorrelation during Transport Barrier Evolution in a High-Temperature Fusion Plasma, Phys. Rev. Lett. 94, 135002 (2005)

    Article  ADS  Google Scholar 

  46. F. Troyon, R. Gruber, H. Saurenmann, et al., MHD-limits to Plasma Confinement, Plasma Phys. Controlled Fusion 26, 209 (1984)

    Article  ADS  Google Scholar 

  47. A. Hasegawa, L. Chen, Plasma Heating by Alfven Wave Phase Mixing, Phys. Rev. Lett. 32, 454 (1974)

    Article  ADS  Google Scholar 

  48. H. Reimerdes, A.M. Garofalo, G.L. Jackson, et al., Reduced Critical Rotation for Resistive-Wall Mode Stabilization in a Near-Axisymmetric Configuration, Phys. Rev. Lett. 98, 055001 (2007)

    Article  ADS  Google Scholar 

  49. M. Takechi, G. Matsunaga, N. Aiba, T. Fujita, et al., Identification of a Low Plasma-Rotation Threshold for Stabilization of the Resistive-Wall Mode, Phys. Rev. Lett. 98, 055001 (2007)

    Article  ADS  Google Scholar 

  50. M. Kikuchi, M. Azumi, Steady State Tokamak Research - Core Physics, Rev. Mod. Phys. 84, 1807 (2012)

    Article  ADS  Google Scholar 

  51. T. Ozeki, M. Azumi, et al., Profile Control for a Stable High βp Tokamak with a Large Bootstrap Current, Plasma physics and contr. nuclear fusion research (Proc. 14th Int. Conf. Würzburg, 1992), 2, IAEA, Vienna, 187 (1993)

  52. C. Kessel, et al., Improved Plasma Performance in Tokamaks with Negative Magnetic Shear, Phys. Rev. Lett. 72, 1212 (1994)

    Article  ADS  Google Scholar 

  53. T. Fujita, T. Oikawa, et al., Plasma Equilibrium and Confinement in a Tokamak with nearly Zero Central Current Density in JT-60U, Phys. Rev. Lett. 87, 245001 (2001)

    Article  ADS  Google Scholar 

  54. N.C. Hawkes, B.C. Stratton, et al., Observation of Zero Current Density in the Core of JET Discharges with Lower Hybrid Heating and Current Drive, Phys. Rev. Lett. 87, 115001 (2001)

    Article  ADS  Google Scholar 

  55. P. Rodrigues, J.P.S. Bizarro, Tokamak Equilibria with Toroidal-Current Reversal in the Plasma Core Consistent with Experimental Data, Phys. Rev. Lett. 99, 125001 (2007)

    Article  ADS  Google Scholar 

  56. M. Matsuoka, Y. Kamada, M. Kikuchi, et al., Study on Negative-Ion-Based Neutral Beam Injection System for JT-60 Upgrade , JAERI-M 89–117 (1989) in Japanese

  57. Fusion Reactor System Laboratory, Concept Study of the Steady State Tokamak Reactor (SSTR), JAERI-M 91-081(1991), https://doi.org/jopss.jaea.go.jp/pdfdata/JAERI-M-91-081.pdf.

  58. M. Kuriyama, et al., High Energy Negative-ion Based Neutral Beam Injection System for JT-60U, Fusion Eng. Design 26, 445 (1995)

    Article  Google Scholar 

  59. A. Kojima, M. Hanada, et al., Achievement of 500 keV Negative Ion Beam Acceleration on JT-60U Negative-ion-based Neutral Beam Injector, Nucl. Fusion 51, 083049 (2011)

    Article  ADS  Google Scholar 

  60. T. Oikawa, K. Ushigusa, et al., Heating and Non-inductive Current Drive by NegativeIon Based NBI in JT-60U, Nucl. Fusion 40, 435 (2000)

    Article  ADS  Google Scholar 

  61. C.Z. Cheng, L. Chen, M.S. Chance, High-n Ideal and Resistive Shear Alfvén Waves in Tokamaks, Annals of Physics 161, 21 (1985)

    Article  ADS  Google Scholar 

  62. K.L. Wong, R.J. Fonck, et al., Excitation of Toroidal Alfvén Eigenmodes in TFTR, Phys. Rev. Lett. 66, 1874 (1991)

    Article  ADS  Google Scholar 

  63. K. Shinohara, Y. Kusama, M. Takechi, A. Morioka, M. Ishikawa, et al. Alfvén Eigenmodes driven by Alfvénic beam ions in JT-60U, Nucl. Fusion 41, 603 (2001)

    Article  ADS  Google Scholar 

  64. Ira B. Bernstein, J.M. Green, M.D. Kruskal, Exact Nonlinear Plasma Oscillations, Phys. Rev. 108, 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  65. H.L. Berk, B.N. Breizman, N.V. Petviashvili, Spontaneous Hole-clump Pair Creation in Weakly Unstable Plasmas, Phys. Lett. A 234, 213 (1997)

    Article  ADS  Google Scholar 

  66. K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, et al., Major Improvement of Gyrotron Efficiency with Beam Energy Recovery, Phys. Rev. Lett. 73, 3532 (1994)

    Article  ADS  Google Scholar 

  67. K. Sakamoto, A. Kasugai, et al., High Power 170GHz Gyrotron with Synthetic Diamond Window, Rev. Sci. Instrum. 70, 208 (1999)

    Article  ADS  Google Scholar 

  68. K. Sakamoto, A. Kasugai, et al., Achievement of Robust High-efficiency 1MW Oscillation in the Hard-self-excitation Region by a 170GHz Continuous-wave gyrotron, Nat. Phys. 3, 411 (2007)

    Article  Google Scholar 

  69. Y. Ikeda, A. Kasugai, et al., Initial Results of Electron Cyclotron Range of Frequency (ECRF) Operation and Experiments in JT-60U, Fus. Eng. Design 53, 351 (2001)

    Article  Google Scholar 

  70. S. Moriyama, T. Kobayashi, A. Isayama, et al., Development and Achievements on the High Power ECRF System in JT-60U, Nucl. Fusion 49, 085001 (2009)

    Article  ADS  Google Scholar 

  71. T. Kobayashi, A. Isayama, et al., Progress of High-power and Long-pulse ECRF System Development in JT-60, Nucl. Fusion 51, 103037 (2011)

    Article  ADS  Google Scholar 

  72. M. Kikuchi, Frontier in Fusion Research: Physics and Fusion (Springer-Verlag, 2011)

  73. A. Isayama, Y. Kamada, S. Ide, et al., Complete Stabilization of a Tearing Mode in Steady State High-βp H-mode Discharges by the First Harmonic Electron Cyclotron Heating/Current Drive on JT-60U, Plasma Phys. Control. Fusion 42, L37 (2000)

    Article  Google Scholar 

  74. G. Gantenbein, H. Zohm, et al., Complete Suppression of Neoclassical Tearing Modes with Current Drive at the Electron-Cyclotron-Resonance Frequency in ASDEX Upgrade Tokamak, Phys. Rev. Lett. 85, 1242 (2000)

    Article  ADS  Google Scholar 

  75. T. Oikawa, A. Isayama, T. Fujita, et al., Evolution of the Current Density Profile Associated with Magnetic Island Formation in JT-60U, Phys. Rev. Lett. 94, 125003 (2005)

    Article  ADS  Google Scholar 

  76. Y. Sakamoto, Y. Kamada, S. Ide, T. Fujita, et al., Characteristics of Internal Transport Barriers in JT-60U Reversed Shear Plasmas, Nucl. Fusion 41, 865 (2001)

    Article  ADS  Google Scholar 

  77. Y. Sakamoto, G. Matsunaga, et al., Development of Reversed Shear Plasmas with High Bootstrap Current Fraction Towards Reactor Relevant Regime in JT-60U, Nucl. Fusion 49, 095017 (2009)

    Article  ADS  Google Scholar 

  78. The PCAST Fusion Review Panel, The U.S. Program of Fusion Energy Research and Development, https://doi.org/science.energy.gov/fes/fesac/reports/reports-archive/

  79. M. Kikuchi, et al., Design Progress of JT-60SU, Plasma physics and controlled nuclear fusion research (Proc. 16th Int. Conf. Montreal, 1996), 3, IAEA, Vienna, 451 (1997)

  80. H. Kishimoto, S. Ishida, M. Kikuchi, H. Ninomiya, Advanced Tokamak Research on JT-60, Nucl. Fusion 45, 986 (2005)

    Article  ADS  Google Scholar 

  81. C. Angioni, A.P. Peeters, G.V. Pereverezev, F. Ryter et al., Density Peaking, Anomalous Pinch, and Collisionality in Tokamak Plasmas, Phys. Rev. Lett. 90, 205003 (2003)

    Article  ADS  Google Scholar 

  82. Y. Wan, J. Li, Y. Liu, X. Wang, et al., Overview of the Present Progress and Activities on the CFETR, Nucl. Fusion 57, 102009 (2017)

    Article  ADS  Google Scholar 

  83. S.O. Dean, Search for the Ultimate Energy Source – History of the US Fusion Energy Program (Springer, 2013)

  84. Proceedings of the 1999 Fusion Summer Study, July 11–23, 1999, Snowmass, Colorado. https://doi.org/sites.apam.columbia.edu/SMproceedings/

  85. Burning Plasma Assessment Committee, Burning Plasma – Bring a Star to Earth, NationalAcademy of Sciences, https://doi.org/www.nap.edu/catalog/10816.html

  86. M. Kikuchi, M. Azumi, Frontier in Fusion Research: Introduction to Modern Tokamak Physics (Springer Verlag, 2015)

  87. M. Kikuchi, F.C. Schüller, Obituaries: Dieter Sigmar and Hiroshi Kishimoto, Nucl. Fusion 45 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, M. The large tokamak JT-60: a history of the fight to achieve the Japanese fusion research mission. EPJ H 43, 551–577 (2018). https://doi.org/10.1140/epjh/e2018-90054-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2018-90054-2

Navigation