Skip to main content

Advertisement

Log in

Microbialites and associated facies of the Late Ordovician system in Thailand: paleoenvironments and paleogeographic implications

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Late Ordovician limestones of the Pa Kae and uppermost Tha Manao Formations (approximately mid-Sandbian to late Katian Stages) of western Sibumasu Terrane in Thailand comprise micritic limestone with abundant bioclasts of fragile fossils, in deep water facies. Both formations have a distinctive Fe–Mn-rich polygonal network vein system containing bioclasts and nodules of micrite. Pa Kae limestones, previously interpreted as rich in microbialites, contain small agglutinated stromatolites but lack calcimicrobes and cements. Unlaminated domes are also present, consistent with the leiolite type of microbial fabrics, other facies are non-microbial micrites. No other microbialite forms were found, despite previous reports of thrombolites and oncolites. The Tha Manao Formation contains no microbialites, evidence that network veins are not genetically related to microbialite growth; in both formations, the network veins formed later. The Thai limestones partly overlap, in age and environmental setting, to mid-Sandbian to early Katian Stage Pagoda Formation (Yangtze Platform, south China), which also possesses a network of veins. A Pagoda Formation sample examined in comparison reveals its veins’ structure to have formed in place by selective replacement of the micritic host rock by opaque matter while enclosed fossils and exotic intraclasts were unaffected. Some authors view the Pagoda Fm and Thai limestones as non-uniformitarian “time-specific facies”. However, they (a) do not fully coincide stratigraphically, and (b) are each diachronous. Furthermore, other time-constrained unusual facies occur in the rock record (e.g., unique microbialite facies in south China after the end-Permian extinction; Ammonitico Rosso facies of Jurassic to Early Cretaceous in Italy) that are not regarded as being non-uniformitarian. Thus, a uniformitarian approach is more appropriate to understand these unusual Ordovician facies, which may relate to early sea-floor partial cementation creating a solid mass that could be fractured to allow pathways of migrating fluids for vein material to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(photo by Ms Thapanee Pengtha, Department of Mineral Resources, Thailand)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Agematsu S, Sashida K, Sardsud A, Machida N (2017) Ordovician-Silurian-Devonian: significance of fossil assemblages at Tarutao, Khao Noi and Kuan Tung, Satun Aspiring Geopark. Pages 23-27 In DMR-CCOP-TNCU Technical seminar on “Biostratigraphy and Karts Morphology of Satun Aspiring Geopark”, 13–14 July 2017. http://www.dmr.go.th/download/article/article_20170720115600.pdf. Accessed 18 Nov 2018

  • Annan JD, Hargreaves JC (2013) A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past 9:367–376

    Article  Google Scholar 

  • Bartley JK, Kah LC, Frank TD, Lyons TW (2014) Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for conform stromatolites. Geobiology. https://doi.org/10.1111/gbi.12114

    Article  Google Scholar 

  • Bender F (1983) Geology of Burma. Gebrüder Borntrager, Berlin, Stuttgart

  • Bergström SM, Chen X, Schmitz B, Young SA, Rong J-Y, Saltzman MR (2009a) First documentation of the Ordovician Guttenberg delta 13C excursion (GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan formations in southeastern China. Geol Mag 146:1–11

    Article  Google Scholar 

  • Bergström SM, Schmitz B, Young SA, Bruton DL (2009b) The δ13C chemostratigraphy of the Upper Ordovician Mjøsa Formation at Furuberget near Hamar, southeastern Norway: Baltic, Trans-Atlantic, and Chinese relations. Norw J Geol 90:65–78

    Google Scholar 

  • Bergström SM, Agematsu S, Schmitz B (2010) Global Upper Ordovician correlation by means of δ13C geochemistry: implications of the discovery of the Guttenberg δ13C excursion (GICE) in Malaysia. Geol Mag 147:641–651

    Article  Google Scholar 

  • Black M (1933) Algal limestones of Andros Island, Bahamas. Philos Trans R Soc Lond Ser B Contain Papers Biol Character 222:165–192

    Article  Google Scholar 

  • Boulvain F (2001) Facies architecture and diagenesis of Belgian Late Frasnian carbonate mounds. Sed Geol 145:269–294

    Article  Google Scholar 

  • Bunopas S (1983) Palaeozoic succession in Thailand. In: Nutalaya P (ed) Proceedings of the workshop on stratigraphic correlation of Thailand and Malaysia, Haad Yai, volume 1, technical papers, Geological Society of Thailand, Bangkok, 8–10 September 1983, pp 39–76

  • Burrett C, Chaodumrong C (2017) Fossil faunas and sedimentary sequences in Satun Geopark—regional and global significance. In: DMR-CCOP-TNCU technical seminar on “biostratigraphy and karts morphology of Satun Aspiring Geopark”, 13–14 July 2017, pp 18–20. http://www.dmr.go.th/download/article/article_20170720115600.pdf. Accessed 18 November 2018

  • Burrett C, Udchachon M, Thassanapak H (2016) Palaeozoic correlations and the Palaeogeography of the Sibumasu (Shan-Thai) Terrane—a brief review. Res Knowl 2:1–17. https://doi.org/10.14456/randk.2016.12

    Article  Google Scholar 

  • Bush ABG, Philander SGH (1999) The climate of the Last Glacial Maximum: results from a coupled atmosphere-ocean general circulation model. J Geophys Res 104(D20):24509–24525

    Article  Google Scholar 

  • Cai F, Ding L, Yao W, Laskowski AK, Xu Q, Zhang J, Sein K (2017) Provenance and tectonic evolution of Lower Palaeozoic-Upper Mesozoic strata from Sibumasu terrane, Myanmar. Gondwana Res 41:325–336

    Article  Google Scholar 

  • Cecca F, Fourcade E, Azéma J (1992) The disappearance of the “Ammonitico Rosso”. Palaeogeogr Palaeoclimatol Palaeoecol 99:55–70

    Article  Google Scholar 

  • Cherns L, Wheeley JR (2007) A pre-Hirnantian (Late Ordovician) interval of global cooling—the Boda Event reassessed. Palaeogeogr Palaeoclimatol Palaeoecol 251:449–460

    Article  Google Scholar 

  • Coimbra R, Immenhauser A, Olóriz F (2009) Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain). Sed Geol 219:332–348

    Article  Google Scholar 

  • DMR (2014) Geology of Thailand. Bureau of Geological Survey, Department of Mineral Resources, Bangkok. ISBN 978-616-316-208-3

    Google Scholar 

  • DMR-CCOP-TNCU (2017) Technical seminar on “biostratigraphy and karst morphology of Satun Aspiring Geopark. 13–14 July, 2017, The Berkeley Hotel Pratunam, Bangkok, Thailand. www.ccop.asia/download/CCOP-AR2017.pdf. Accessed 19 Dec 2018

  • Fortey R (1997) Late Ordovician trilobites from southern Thailand. Palaeontology 40:397–449

    Google Scholar 

  • Fortey RA, Cocks LRM (2005) Late Ordovician global warming—the Boda Event. Geology 33:405–408

    Article  Google Scholar 

  • Frey RC (1995) Middle and Upper Ordovician nautiloid cephalopods of the Cincinnati Arch region of Kentucky, Indiana and Ohio. United States Geological Survey Professional Paper 1066-P. United States Government Printing Office, Washington, 1995

  • George A (1999) Deep-water Stromatolites, Canning Basin northwestern Australia. Palaios 14:493–505

    Article  Google Scholar 

  • Gómez-Pérez I (2003) An Early Jurassic deep-water stromatolitic bioherm related to possible methane seepage (Los Molles Formation, Neuquén, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 201:21–49

    Article  Google Scholar 

  • Han Z, Yang Z, Tong Y, Jing XQ (2015) New paleomagnetic results from Late Ordovician rocks of the Yangtze Block, South China, and their paleogeographic implications. J Geophys Res Solid Earth 120:4759–4772. https://doi.org/10.1002/2015JB012005

    Article  Google Scholar 

  • Himmler T, Smrzka D, Zwicker J, Kasten S, Shapiro RS, Bohrmann G, Peckmann J (2018) Stromatolites below the photic zone in the northern Arabian Sea formed by calcifying chemotrophic microbial mats. Geology. https://doi.org/10.1130/g39890.1

    Article  Google Scholar 

  • Histon K (2012) Palaeoenvironmental and temporal significance of variably colored Paleozoic orthoconic nautiloid cephalopod accumulations. Palaeogeogr Palaeoclimatol Palaeoecol 367–368:193–202

    Article  Google Scholar 

  • Huang L, Wei L, Bai D, Li Z, Liang E, Chen Z (2018) The characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda formation, in Northwestern Hunan Province. Earth Sci 10:10. https://doi.org/10.3799/dqkx.2018.123 (Chinese with English abstract)

    Article  Google Scholar 

  • Jenkyns H (1974) Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. Spec Publ Int Assoc Sedimentol 1:249–271

    Google Scholar 

  • Jin J, Zhan R, Wu R (2018) Equatorial cold-water tongue in the Late Ordovician. Geology 46:759–762

    Article  Google Scholar 

  • Kandemir R, Yilmaz C (2009) Lithostratigraphy, facies, and deposition environment of the lower Jurassic Ammonitico Rosso type sediments (ARTS) in the Gümüşhane area, NE Turkey: implications for the opening of the northern branch of the Neo-Tethys Ocean. J Asian Earth Sci 34:586–598

    Article  Google Scholar 

  • Kershaw S (2015) Modern Black Sea oceanography applied to the end-Permian extinction event. Journal of Palaeogeography 4:52–62

    Article  Google Scholar 

  • Kershaw S, Tang H, Li Y, Guo L (2018) Oxygenation in carbonate microbialites and associated facies after the end-Permian mass extinction: problems and potential solutions. J Palaeogeogr 7:32–47

    Article  Google Scholar 

  • Khin Z, Win S, Barber AJ, Crow MJ, Yin YN (2017) Introduction to the geology of Myanmar. In: Barber AK, Khin Z, Crow MJ (eds) Myanmar: geology, resources and tectonics, vol 48. Geological Society, London, pp 1–17

    Google Scholar 

  • Kruse PD (1989) A Thai Ordovician receptaculitalean. Alcheringa 13:141–144

    Article  Google Scholar 

  • Lokier S, Andrade LL, Court WM, Dutton KE, Head IM, van der Land C, Paul A, Sherry A (2017) A new model for the formation of microbial polygons in a coastal sabkha setting. Depos Record 3:201–208

    Article  Google Scholar 

  • Maaleki-Moghadam M, Rafiei B, Richoz S, Woods AD, Krystyn L (2019) Anachronistic facies and carbon isotopes during the end-Permian biocrisis: evidence from the mid-Tethys (Kisejin, Iran). Palaeogeogr Palaeoclimatol Palaeoecol 516:364–383

    Article  Google Scholar 

  • Meesook A (2013) Lithostratigraphy and marine faunal assemblages of the Ordovician Thung Song Group, in Ban Tha Kradan area, Si Sawat Districtu, Kanchanaburi Province, western Thailand. Technical report no. BFP 2/2013, Bureau of Fossil Protection, Department of Mineral Resources, Bangkok, Thailand

  • Metcalf I (1998) Palaeozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constraints and implications for biogeography. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backbuys Publishers, Leiden, pp 25–41

    Google Scholar 

  • Morley CK, Charusiri P, Watkinson IM (2011) Structural geology of Thailand during the Cenozoic, chap 11. In: Ridd MF, Barber AK, Crow MJ (eds) Geology of Thailand. Geological Society, London, pp 273–334

  • Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone-marl alternation in the Silurian of Gotland, Sweden. Facies 34:159–176

    Article  Google Scholar 

  • Munnecke A, Zhang Y, Liu X, Cheng J (2011) Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeogr Palaeoclimatol Palaeoecol 307:17–43

    Article  Google Scholar 

  • Myint LT (1973) The Lower Palaeozoic stratigraphy of western part of the southern Shan State, Burma. Geol Soc Malays Bull 6:143–163

    Article  Google Scholar 

  • Peltier WR, Solheim LP (2004) The climate of the Earth at Last Glacial Maximum: statistical equilibrium state and a mode of internal variability. Quatern Sci Rev 23:335–357

    Article  Google Scholar 

  • Ridd MF (2011) Lower Palaeozoic. In: Ridd MF, Barber AJ, Crow MJ (eds) The Geology of Thailand. Geological Society, London. https://doi.org/10.1144/GOTH

    Google Scholar 

  • Ridd MF, Watkinson I (2013) The Phuket-Slate Belt terrane: tectonic evolution and strike-slip emplacement of a major terrane on the Sundaland margin of Thailand and Myanmar. Proc Geol Assoc 124:994–1010

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Supplement 1):179–214

    Article  Google Scholar 

  • Rodriguez-Martinez M (2011) Waulsortian mud mounds. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Berlin, pp 893–901

    Chapter  Google Scholar 

  • Schneider von Deimling T, Ganopolski A, Held H, Rahmstorf S (2006) How cold was the Last Glacial maximum? Geophys Res Lett 33:L14709. https://doi.org/10.1029/2006GL026484

    Article  Google Scholar 

  • Scotese CR (2015) Plate Tectonic Flipbook V.2. Van der Voo Retirement Symposium, 26–27 August 2015, Ann Arbor, Michigan, USA. http://www.researchgate.net/publication/281393670. Accessed 15 Dec 2018

  • Song YY, Yu SY, Zhang YD, Sun XW, Muir LA, Liu PJ (2017) Reconstruction of a shallow intraplate depression by microfacies analysis of the Upper Ordovician Miaopo and Datianba formations in the northwestern Yangtze Region, China. Palaeoworld 26:589–601

    Article  Google Scholar 

  • Stait B, Burrett C (1984) Ordovician nautiloid faunas of Central and Southern Thailand. Geol Mag 121:115–124

    Article  Google Scholar 

  • Stephens NP, Sumner DY (2003) Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia. Sedimentology 50:1283–1302

    Article  Google Scholar 

  • Stouge S (2004) Ordovician siliciclastics and carbonates of Öland, Sweden. Field guide, Erlanger Geologisches Abhandlungen-Sonderband 5. International Symposium on early Palaeozoic palaeogeography and palaeoclimate, September 1–3, 2004, Erlangen, Germany

  • Stow DAV (2005) Sedimentary rocks in the field; a color guide. CRC Press, Boca Raton

    Book  Google Scholar 

  • Suphakdee P (2017) The Paleozoic lithostratigraphy and faunal assemblage of the Pa Samet area, La Ngu District, Satun Province. Technical report no. BGS 08/2017, Bureau of Geological Survey, Department of Mineral Resources, Bangkok, Thailand

  • Trend-Staid M, Prel WL (2002) Sea-surface temperature at the Last Glacial Maximum: a reconstruction using the modern analog technique. Palaeoceanography 17(4):1065. https://doi.org/10.1029/2000PA000506

    Article  Google Scholar 

  • Udchachon M, Charusiri P, Thassanapak H, Burrett C (2018) A new section of Lower Palaeozoic rocks in Kayin State (southeast Myanmar). Proc Geol Assoc 129:215–226

    Article  Google Scholar 

  • Wongwanich T (1990) Lithostratigraphy, sedimentology and diagenesis of Ordovician carbonates, Southern Thailand: University of Tasmania, unpublished Ph.D. thesis

  • Wongwanich T (2017) The red stromatolitic limestones, the Pa Kae Formation. Pages 29-39 In DMR-CCOP-TNCU Technical seminar on “Biostratigraphy and Karts Morphology of Satun Aspiring Geopark”, 13–14 July 2017. http://www.dmr.go.th/download/article/article_20170720115600.pdf. Accessed 20 Dec 2018

  • Wongwanich T, Burrett C, Tansathein W, Chaodumrong P (1990) Lower to mid-Palaeozoic stratigraphy of Satun Province, southern peninsular Thailand. J Southeast Asia Earth Sci 4:1–9

    Article  Google Scholar 

  • Zhan R, Jin J (2007) Ordovician—Early Silurian (Llandovery) stratigraphy and palaeontology of the Upper Yangtze Platform, South China. In: Post-Conference field excursion for: the tenth international symposium on the Ordovician system; the third international symposium on the Silurian system; IGCP 503 annual meeting. Nanjing, June 2007. Science Press, Beijing

  • Zhan R, Jin J, Liu J, Corcoran P, Luan X, Wei X (2016) Meganodular limestone of the Pagoda Formation: a time-specific carbonate facies in the Upper Ordovician of South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:349–362

    Article  Google Scholar 

  • Zhang K, Yuan A, Feng Q (2018) The Upper Ordovician microfossil assemblages from the Pagoda Formation in Zigui, Hubei Province. Journal of Earth Sciences 29:900–911

    Google Scholar 

  • Zhou ZQ, Zhou ZY, Xiang LW (2016) Trilobite fauna from the Ordovician Pagoda Formation of central and western Yangtze Block. Geological Publishing House, Beijing. ISBN 978-7-116-09882-4

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Mineral Resources of Thailand for support for this project and facilitating access to field sites in the Satun Geopark. We thank Ms. Thapanee Pengtha, Department of Mineral Resources, Thailand, for Fig. 5e. We are very grateful for editorial comments and information from three anonymous reviewers that have significantly improved this paper. SK thanks Sylvie Crasquin (CNRS Paris) for introduction to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Kershaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kershaw, S., Chitnarin, A., Noipow, N. et al. Microbialites and associated facies of the Late Ordovician system in Thailand: paleoenvironments and paleogeographic implications. Facies 65, 35 (2019). https://doi.org/10.1007/s10347-019-0579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0579-y

Keywords

Navigation