Skip to main content
Log in

Substrate-Borne Vibration Mediates Intrasexual Agonism in the New Zealand Cook Strait Giant Weta (Deinacrida rugosa)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Substrate-borne vibrational communication is a common mode of information transfer in many invertebrate groups, with vibration serving as both primary and secondary signal channels in Orthopterans. The Cook Strait giant weta, Deinacrida rugosa (Orthoptera: Anostostomatidae), is an endangered New Zealand insect whose communication system has not been previously described. After field observations of intraspecific interactions in D. rugosa provided preliminary evidence for substrate-borne vibrational communication in the species, we sought to identify the following: vibrational signal structure, the mechanism of signal production, whether signal production is a sexually dimorphic trait, whether substrate-borne signals encode information regarding sender size, the primary social context in which vibration is utilized and finally, the function of vibrational signaling in the species. We used laser Doppler vibrometry to show that D. rugosa males produce low frequency (DF = 37.00 ± 1.63 Hz) substrate-borne vibrations through dorso-ventral tremulation. Rarely produced by females, male signals appear to target rivals while both are in the direct physical presence of a female. Tremulatory responses to playbacks were only produced by males in male-male-female trial contexts, and neither sex exhibited walking vibrotaxis to playback signals, indicating that substrate-borne vibrational signals are not likely a component of the courtship repertoire. While we found that vibrational signal structure was not closely related to signaler size, males that initiated male-male signaling bouts held a significant advantage in contests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467

    Google Scholar 

  • Alexander RD (1967) Acoustical communication in arthropods. Annu Rev Entomol 12:495–526

    Google Scholar 

  • Alexander RD, Otte D (1967) The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthoptera. Miscellaneous publications of the University of Michigan Museum of Zoology, 113

  • Beckers OM, Schul J (2008) Developmental plasticity of mating calls enables acoustic communication in diverse environments. P Roy Soc B-Biol Sci 275:1243–1248

    Google Scholar 

  • Bell PD (1980) Multimodal communication by the black-horned tree cricket, Oecanthus nigricornis (Walker) (Orthoptera: Gryllidae). Can J Zool 58:1861–1868

    Google Scholar 

  • Benediktov AA (2009) Vibration communication in orthopteroid insects (Orthoptera) from suborder Caelifera. Mosc Univ Biol Sci Bull 64:126–128

    Google Scholar 

  • Bertram SM, Rook VL, Fitzsimmons LP (2010) Strutting their stuff: victory displays in the spring field cricket. Behaviour 147:1249–1266

    Google Scholar 

  • Boumans L, Johnsen A (2014) Species-specific communication bars interspecific mating between syntopic species of Zwicknia stoneflies (Plecoptera: Capniidae). Biol J Linn Soc 113:969–980. https://doi.org/10.1111/bij.12372

    Article  Google Scholar 

  • Brown WD (2016) Mating behavior of the endemic Hawaiian cricket Leptogryllus elongatus (Orthoptera: Gryllidae: Oecanthinae). J Insect Behav 29:449–458

    Google Scholar 

  • Caldwell MS, Johnston GR, McDaniel JG, Warkentin KM (2010) Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Curr Biol 20:1012–1017

    CAS  PubMed  Google Scholar 

  • Cocroft RB (2011) The public world of insect vibrational communication. Mol Ecol 20:2041–2043

    PubMed  Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology, signals, and signal functions. The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld Research Network, Trivandrum, pp 47–68

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cocroft RB, Rodriguez RL, Hunt RE (2010) Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biol J Linn Soc 99:60–72

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    PubMed  Google Scholar 

  • C̆okl A, Nardi C, Bento JMS, Hirose E, Panizzi AR (2006) Transmission of stridulatory signals of the burrower bugs, Scaptocoris castanea and Scaptocoris carvalhoi (Heteroptera: Cydnidae) through the soil and soybean. Physiol Entomol 31:371–381

    Google Scholar 

  • Čokl A, Dias AM, Moraes MCB, Borges M, Laumann RA (2017) Rivalry between stink bug females in a vibrational communication network. J Insect Behav 30:741–758

    Google Scholar 

  • Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 215–247

  • Elias DO, Kasumovic MM, Punzalan D, Andrade MC, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910

    PubMed  PubMed Central  Google Scholar 

  • Field LH (1980) The tick sound of a giant weta, Deinacrida rugosa (Orthoptera: Stenopelmatidae: Deinacridinae). New Zeal Entomol 7:176–183

    Google Scholar 

  • Field LH (2001) The biology of wetas, king crickets and their allies. CABI, New York

    Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defense and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141

    Google Scholar 

  • Field LH, Roberts KL (2003) Novel use of hair sensilla in acoustic stridulation by New Zealand giant wetas (Orthoptera: Anostostomatidae). Arthropod Struct Dev 31:287–296

    PubMed  Google Scholar 

  • Gibbs GW (1998) Why are some weta (Orthoptera: Stenopelmatidae) vulnerable yet others are common? J Insect Conserv 2:161–166

    Google Scholar 

  • Gibbs GW (2006) Ghosts of Gondwana: the history of life in New Zealand. Craig Potton Publishing, Nelson

    Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Google Scholar 

  • Girard MB, Kasumovic MM, Elias DO (2011) Multi-modal courtship in the peacock spider, Maratus volans (OP-Cambridge, 1874). PLoS One 6:e25390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogala M (2006) Vibratory signals produced in Heteroptera -- Pentatomorpha and Cimicomorpha. In: Drosopoulos S, Claridge M (eds) Insect sounds and communication: physiology, behaviour, and evolution. Contemporary topics in entomology. CRC Press and Taylor and Francis Group, Boca Raton, Florida, pp 275–295

    Google Scholar 

  • Greenfield MD, Minckley RL (1993) Acoustic dueling in tarbush grasshoppers: settlement of territorial contests via alternation of reliable signals. Ethology 95:309–326

    Google Scholar 

  • Gwynne DT (1977) Mating behaviour of Neoconocephalus ensiger (Orthoptera: Tettigoniidae) with notes on the calling song. Can Entomol 109:237–242

    Google Scholar 

  • Gwynne DT (2004) Reproductive behavior of ground weta (Orthoptera: Anostostomatidae): drumming behavior, nuptial feeding, post-copulatory guarding and maternal care. J Kansas Entomol Soc 77:414–428

    Google Scholar 

  • Haami B (2010) Te aitanga pepeke the insect world. In: Phillips J (ed) Te taiao Maori and the natural world. David Bateman, Auckland, pp 126–131

    Google Scholar 

  • Herberstein ME, Painting CJ, Holwell GI (2017) Scramble competition polygyny in terrestrial arthropods. Adv Study Behav 49:237–295

    Google Scholar 

  • Hill PSM (2001) Vibration and animal communication: a review. Am Zool 41:1135–1142

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    CAS  Google Scholar 

  • Kavčič A, Čokl A, Laumann RA, Blassioli-Moraes MC, Borges M (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Euschistus heros. PLoS One 8:e56503

    PubMed  PubMed Central  Google Scholar 

  • Kelly CD (2016) Effect of nutritional stress and sex on melanotic encapsulation rate in the sexually size dimorphic Cook Strait giant weta (Deinacrida rugosa). Can J Zool 94:787–792

    CAS  Google Scholar 

  • Kelly CD, Gwynne DT (2016) The effect of condition on mate searching speed and copulation frequency in the Cook Strait giant weta. Behav Ecol Sociobiol 70:1403–1409

    Google Scholar 

  • Kelly CD, Gwynne DT (2017) Do male Cook Strait giant weta prudently allocate sperm? J Insect Behav 30:308–317

    Google Scholar 

  • Kelly CD, Bussiere LF, Gwynne DT (2008) Sexual selection for male mobility in a giant insect with female-biased size dimorphism. Am Nat 172:417–423

    PubMed  Google Scholar 

  • Kelly CD, Bussiere LF, Gwynne DT (2010) Pairing and insemination patterns in a giant weta (Deinacrida rugosa: Orthoptera; Anostostomatidae). J Ethol 28:483–489

    Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne sound and vibration signals in the biotope. Behav Process 8:125–145

    CAS  Google Scholar 

  • Keuper A, Otto C, Latimer W, Schatral A (1985) Airborne sound and vibration signals of bushcrickets and locusts; their importance for the behaviour in the biotope. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin Hamburg, pp 135–142

    Google Scholar 

  • Kočárek P (2010) Substrate-borne vibrations as a component of intraspecific communication in the groundhopper Tetrix ceperoi. J Insect Behav 23:348–363

    Google Scholar 

  • Kočárek P, Holuša J, Grucmanová Š, Musiolek D (2011) Biology of Tetrix bolivari (Orthoptera: Tetrigidae). Cent Eur J Biol 6:531–544

    Google Scholar 

  • Kunz G, Bullerdiek D, Hoch H, Holzinger W, Mühlethaler R, Wessel A (2014) Courtship behaviour and vibrational communication of the planthopper Apartus michalki (Wagner, 1948)(Hemiptera: Fulgoromorpha: Cixiidae). Cicadina 14:55–63

    Google Scholar 

  • Latimer W, Schatral A (1983) The acoustic behaviour of the katydid Tettigonia cantans I. behavioural responses to sound and vibration. Behav Process 8:113–124

    CAS  Google Scholar 

  • Lewis T (ed) (1985) Insect communication. Academic Press, London

    Google Scholar 

  • Logue DM, Abiola IO, Rains D, Bailey NW, Zuk M, Cade WH (2010) Does signaling mitigate the cost of agonistic interactions? A test in a cricket that has lost its song. P Roy Soc B-Biol Sci 277:2571–2575

    CAS  Google Scholar 

  • Loher W, Chandrashekaran MK (1970) Acoustical and sexual behaviour in the grasshopper Chimarocephala pacifica pacifica (Oedipodinae). Entomol Exp Appl 13:71–84

    Google Scholar 

  • Mason AC (1996) Territoriality and the function of song in the primitive acoustic insect Cyphoderris monstrosa (Orthoptera: Haglidae). Anim Behav 51:211–214

    Google Scholar 

  • McIntyre M (2001) The ecology of some large weta species in New Zealand. In: Field LH (ed) The biology of weta, king crickets and their allies. CABI Publishing, Wallingford, pp 231–242

    Google Scholar 

  • McIvor J (2003) Tane’s weta. Reed Publishing, Auckland

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Google Scholar 

  • Michelsen A (2014) Physical aspects of vibrational communication. In: Cocroft RB, Gogala M, PSM H, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 199–213

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Montealegre-Z F, Mason AC (2005) The mechanics of sound production in Panacanthus pallicornis (Orthoptera: Tettigoniidae: Conocephalinae): the stridulatory motor patterns. J Exp Biol 208:1219–1237

    PubMed  Google Scholar 

  • Morgan-Richards M, Gibbs GW (2001) A phylogenetic analysis of New Zealand giant and tree weta (Orthoptera: Anostostomatidae: Deinacrida and Hemideina) using morphological and genetic characters. Invertebr Taxon 15:1–12

    Google Scholar 

  • Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Google Scholar 

  • Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool 233:129–163

    Google Scholar 

  • Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis. Proc Natl Acad Sci USA 100:577–580

    CAS  PubMed  Google Scholar 

  • Otte D (1977) Communication in Orthoptera. In Sebeok T (ed) How animals communicate. Indiana University Press, Bloomington, pp 334–361

  • Parri S, Alatalo R, Kotiaho J, Mappes J (1996) Female choice for male drumming in the wolf spider Hydrolycos rubrofasciata. Anim Behav 53:305–312

    Google Scholar 

  • Pratt RC, Morgan-Richards M, Trewick SA (2008) Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Philos Trans R Soc Lond B Biol Sci 363:3427–3437

    PubMed  PubMed Central  Google Scholar 

  • Prešern J, Polajnar J, de Groot M, Zorović M, Virant-Doberlet M (2018) On the spot: utilization of directional cues in vibrational communication of a stink bug. Sci Rep 8:5418

    PubMed  PubMed Central  Google Scholar 

  • Rajaraman K, Godthi V, Pratap R, Balakrishnan R (2015) A novel acoustic-vibratory multimodal duet. J Exp Zool 218:3042–3050

    Google Scholar 

  • Ramsay GW (1953) A supplementary sound-producing device in Deinacrida rugosa Buller (the Stephens Island Weta). New Zeal Entomol 1:12–14

  • Rasband, WS (1997) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014

  • Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296

    Google Scholar 

  • Roces F, Hölldobler B (1995) Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav Ecol Sociobiol 37:297–302

    Google Scholar 

  • Roces F, Tautz J, Hölldobler B (1993) Stridulation in leaf-cutting ants. Naturwissenschaften 80:521–524

    Google Scholar 

  • Sarria-S FA, Buxton K, Jonsson T, Montealegre-Z F (2016) Wing mechanics, vibrational and acoustic communication in a new bush-cricket species of the genus Copiphora (Orthoptera: Tettigoniidae) from Colombia. Zool Anz 263:55–65

    Google Scholar 

  • Sherley GH (1998) Translocation a threatened New Zealand giant orthopteran, Deinacrida sp. (Stenopelmatidae): some lessons. J Insect Conserv 2:195–199

    Google Scholar 

  • Simmons LW, Bailey WJ (1992) Agonistic communication between males of a zaprochiline katydid (Orthoptera: Tettigoniidae). Behav Ecol 4:364–368

    Google Scholar 

  • Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PLoS One 7(10):e47646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, PSM H, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 375–393

    Google Scholar 

  • ter Hofstede HM, Schöneich S, Robillard T, Hedwig B (2015) Evolution of a communication system by sensory exploitation of startle behavior. Curr Biol 25:3245–3252

    PubMed  Google Scholar 

  • Trewick SA (2001) Scree weta phylogeography: surviving glaciation and implications for Pleistocene biogeography in New Zealand. New Zeal J Zool 28:291–298

    Google Scholar 

  • Trewick SA, Morgan-Richards M (2004) Phylogenetics of New Zealand’s tree, giant and tusked weta (Orthoptera: Anostostomatidae): evidence from mitochondrial DNA. J Orthop Res 13:185–196

    Google Scholar 

  • Trewick SA, Morgan-Richards M (2005) After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). J Biogeogr 32:295–309

    Google Scholar 

  • Tuckerman JF, Gwynne DT, Morris GK (1993) Reliable acoustic cues for female mate preference in katydid (Scudderia curvicauda, Orthoptera: Tettigoniidae). Behav Ecol 4:106–113

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • von Helverson D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180(4):373–386

    Google Scholar 

  • Watts C, Thornburrow D (2009) Where have all the weta gone? Results after two decades of transferring a threatened New Zealand giant weta, Deinacrida mahoenui. J Orthop Res 20:127–135

    Google Scholar 

  • Watts C, Empson R, Thornburrow D, Rohan M (2012) Movements, behavior and survival of adult cook straight giant weta (Deinacrida rugosa; Orthoptera: Anostostomatidae) immediately after translocation as revealed by radiotracking. J Insect Conserv 16:763–776

    Google Scholar 

  • Watts C, Thornburrow D, Stringer I, Cave V (2017) Population expansion by Cook Strait giant weta, Deinacrida rugosa (Orthoptera: Anostostomatidae), following translocation to Matiu/Somes Island, New Zealand, and subsequent changes in abundance. J Orthop Res 26:171–180

    Google Scholar 

  • Weidemann S, Keuper A (1987) Influence of vibratory signals on the phonotaxis of the gryllid Gryllus bimaculatus DeGeer (Ensifera: Gryllidae). Oecologia 74:316–318

    PubMed  Google Scholar 

  • Weissman DB (2001) Communication and reproductive behaviour in north American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Oxon, pp 351–375

    Google Scholar 

  • Žunič A, Cokl A, Virant Doberlet M, Millar JG (2008) Communication with Signals Produced by Abdominal Vibration, Tremulation, and Percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101(6):1169-1178

Download references

Acknowledgments

Funding for this study was provided by the U.S. National Science Foundation to DRH (NSF #1237606), from the Orthopterists Society to APS. Research space was kindly provided by Victoria University of Wellington. We thank Jo Greenman and Matt Sidaway (NZDOC) for field site logistical support, George Gibbs (VUW) for helpful experimental design suggestions, and thank the Te Atiawa, Taranaki, Ngati Tama, and Ngati Ruanui Maori Iwi for approval and support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Howard.

Ethics declarations

All research was carried out under the approval of the Animal Ethics Committees of the University Toronto Scarborough and Augustana College, under the Authority of New Zealand Department of Conservation Low Impact Permits #WE-280-RES and #WE-32885-RES issued to DRH, and with the approval of the indigenous stakeholders, the Taranaki Whanui - Port Nicholson Settlement Trust.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, D.R., Schmidt, A.P., Hall, C.L. et al. Substrate-Borne Vibration Mediates Intrasexual Agonism in the New Zealand Cook Strait Giant Weta (Deinacrida rugosa). J Insect Behav 31, 599–615 (2018). https://doi.org/10.1007/s10905-018-9700-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-018-9700-2

Keywords

Navigation