Skip to main content
Log in

Ergodicity and Hopf–Lax–Oleinik formula for fluid flows evolving around a black hole under a random forcing

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We study the ergodicity properties of weak solutions to a relativistic generalization of Burgers equation posed on a curved background and, specifically, a Schwarzschild black hole. We investigate the interplay between the dynamics of shocks, a curved geometric background, and a random boundary forcing, and solve three problems of independent interest. First of all, we consider the standard Burgers equation on a half-line and establish a ‘one-force-one-solution’ principle when the random forcing at the boundary is sufficiently “strong” in comparison with the velocity of the solutions at infinity. Secondly, we consider the Burgers–Schwarzschild model and establish a generalization of the Hopf–Lax–Oleinik formula. This novel formula takes the curved geometry into account and allows us to establish the existence of bounded variation solutions. Thirdly, under a random boundary forcing in the vicinity of the horizon of the black hole, we prove the existence of a random global attractor and we again validate the ‘one-force-one-solution’ principle. Finally, we extend our main results to the pressureless Euler system which includes a transport equation satisfied by the integrated fluid density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Clearly, our assumption \(u_0 \in L^1([r_*, +\infty ))\) is equivalent to \(U_0 \in L^\infty ([r_*, +\infty ))\), since the factor \(1-2m/r\) remains bounded near \(r_*\) and tends to 1 at infinity.

References

  1. Bakhtin, Y., Li, L.: Thermodynamic limit for directed polymers and stationary solutions of the Burgers equation. ArXiv e-prints (2016)

  2. Bakhtin, Y.: Ergodic theory of the Burgers equation. In: Probability and Statistical Physics in St. Petersburg, volume 91 of Proceedings of Symposia in Pure Mathematics, pp. 1–49. American Mathematical Society, Providence (2016)

  3. Bakhtin, Y.: Burgers equation with random boundary conditions. Proc. Am. Math. Soc. 135(7), 2257–2262 (2007). (electronic)

    Article  MathSciNet  Google Scholar 

  4. Bakhtin, Y.: The Burgers equation with Poisson random forcing. Ann. Probab. 41(4), 2961–2989 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bakhtin, Y.: Inviscid Burgers equation with random kick forcing in noncompact setting. Electron. J. Probab. 21, 50 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bakhtin, Y., Cator, E., Khanin, K.: Space–time stationary solutions for the Burgers equation. J. Am. Math. Soc. 27(1), 193–238 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bardos, C., le Roux, A.Y., Nédélec, J.-C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  MathSciNet  Google Scholar 

  8. Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447(1–2), 1–66 (2007)

    Article  MathSciNet  Google Scholar 

  9. Debussche, A., Vovelle, J.: Invariant measure of scalar first-order conservation laws with stochastic forcing. Probab. Theory Relat. Fields 163(3–4), 575–611 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dirr, N., Souganidis, P.E.: Large-time behavior for viscous and nonviscous Hamilton-Jacobi equations forced by additive noise. SIAM J. Math. Anal. 37(3), 777–796 (2005). (electronic)

    Article  MathSciNet  Google Scholar 

  11. Eling, C., Oz, Y.: The anomalous scaling exponents of turbulence in general dimension from random geometry. J. High Energy Phys. 2015, 15 (2015)

    Article  MathSciNet  Google Scholar 

  12. Generozov, A., Blaes, O., Fragile, P.C., Henisey, K.B.: Physical properties of the inner shocks in hot, tilted black hole accretion flows. Astrophys J 780, 80 (2014)

    Google Scholar 

  13. Gomes, D., Iturriaga, R., Khanin, K., Padilla, P.: Viscosity limit of stationary distributions for the random forced Burgers equation. Mosc. Math. J. 5(3), 613–631 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Hairer, M., Mattingly, J.: The strong Feller property for singular stochastic PDEs. ArXiv e-prints (2016)

  15. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  16. Hoang, V.H., Khanin, K.: Random Burgers equation and Lagrangian systems in non-compact domains. Nonlinearity 16(3), 819–842 (2003)

    Article  MathSciNet  Google Scholar 

  17. Iturriaga, R., Khanin, K.: Burgers turbulence and random Lagrangian systems. Commun. Math. Phys. 232(3), 377–428 (2003)

    Article  MathSciNet  Google Scholar 

  18. Joseph, K.: Burgers’ equation in the quarter plane, a formula for the weak limit. Commun. Pure Appl. Math. 2, 133–149 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kifer, Y.: The Burgers equation with a random force and a general model for directed polymers in random environments. Probab. Theory Relat. Fields 108(1), 29–65 (1997)

    Article  MathSciNet  Google Scholar 

  20. LeFloch, P.G., Xiang, S.: Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime. The relativistic burgers equation. J. Math. Pures Appl. (2018)

  21. LeFloch, P.G.: Explicit formula for scalar nonlinear conservation laws with boundary condition. Math. Methods Appl. Sci. 10(3), 265–287 (1988)

    Article  MathSciNet  Google Scholar 

  22. LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems. IMA Vol. Math. Appl. 27, 126–138 (1990)

    MathSciNet  Google Scholar 

  23. LeFloch, P.G., Makhlof, H.: A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime. Commun. Comput. Phys. 15(3), 827–852 (2014)

    Article  MathSciNet  Google Scholar 

  24. LeFloch, P.G., Nedelec, J.-C.: Explicit formula for weighted scalar nonlinear conservation laws. Trans. Am. Math. Soc. 308, 667–683 (1988)

    Article  MathSciNet  Google Scholar 

  25. LeFloch, P.G., Xiang, S.: Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime. J. Math. Pures Appl. 106, 1038–1090 (2016)

    Article  MathSciNet  Google Scholar 

  26. LeFloch, P.G., Makhlof, H., Okutmustur, B.: Relativistic Burgers equations on curved spacetimes. Derivation and finite volume approximation. SIAM J. Numer. Anal. 50, 2136–2158 (2012)

    Article  MathSciNet  Google Scholar 

  27. Sinaĭ, Y.G.: Two results concerning asymptotic behavior of solutions of the Burgers equation with force. J. Stat. Phys. 64(1–2), 1–12 (1991)

    Article  MathSciNet  Google Scholar 

  28. Suidan, T.M.: Stationary measures for a randomly forced Burgers equation. Commun. Pure Appl. Math. 58(5), 620–638 (2005)

    Article  MathSciNet  Google Scholar 

  29. Volpert, A.: The BV space and quasilinear equations. Math. USSR Sb. 2, 265–267 (1967)

    Google Scholar 

  30. Weinan, E., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151(3), 877–960 (2000)

    Article  MathSciNet  Google Scholar 

  31. Yang, H., Zimmerman, A., Luis, L.: Turbulent black holes. Phys. Rev. Lett. 114, 081101 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work of YB was partially supported by the National Science Foundation (NSF) through Grant DMS-1460595. This work was done when PLF was a visiting researcher at the Courant Institute of Mathematical Sciences (NYU) and was also partially supported by the Innovative Training Networks (ITN) Grant 642768 (ModCompShock).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtin, Y., LeFloch, P.G. Ergodicity and Hopf–Lax–Oleinik formula for fluid flows evolving around a black hole under a random forcing. Stoch PDE: Anal Comp 6, 746–785 (2018). https://doi.org/10.1007/s40072-018-0119-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0119-8

Keywords

Mathematics Subject Classification

Navigation