Skip to main content
Log in

Lack of fit test for long memory regression models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper proposes a test for assessing the accuracy of an assumed nonlinear regression model with long memory design and heteroscedastic long memory errors. The test is based on the marked empirical process. The asymptotic distributions of the proposed test statistics are investigated. The leave-one-observation-out kernel type estimator of the conditional variance function is also constructed in order to implement the lack of fit test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bates DM, Watts DG (1988) Nonlinear analysis and its applications. Wiley, New York

    MATH  Google Scholar 

  • Beran J, Feng Y, Ghosh S, Kulik R (2013) Long-memory processes. Probabilistic properties and statistical methods. Springer, Hiedelberg

    Book  Google Scholar 

  • Beran J, Feng Y, Ghosh S (2015) Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models. Stat Pap 56:431–451

    Article  MathSciNet  Google Scholar 

  • Berry WD, Feldman S (1985) Multiple regression in practice. Sage Publications, California

    Book  Google Scholar 

  • Bertram P, Kruse R, Sibbertsen P (2013) Fractional integration versus level shifts: the case of realized asset correlations. Stat Pap 54:977–991

    Article  MathSciNet  Google Scholar 

  • Csörgő S, Mielniczuk J (1995) Nonparametric regression under long-range dependent normal errors. Ann Stat 23:1000–1014

    Article  MathSciNet  Google Scholar 

  • Dehling H, Taqqu MS (1989) The empirical process of some long-range dependent sequences with an application to U-statistics. Ann Stat 17:1767–1783

    Article  MathSciNet  Google Scholar 

  • Doukhan P, Lang G, Surgailis D (2002) Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann Inst H Poincaré Probab Stat 38:879–896

    Article  MathSciNet  Google Scholar 

  • Giraitis L, Koul HL, Surgailis D (1996) Asymptotic normality of regression estimators with long memory errors. Stat Probab Lett 29:317–335

    Article  MathSciNet  Google Scholar 

  • Giraitis L, Robinson PM, Surgailis D (2000) A model for long memory conditional heteroscedasticity. Ann Stat 10:1002–1024

    MathSciNet  MATH  Google Scholar 

  • Giraitis L, Koul HL, Surgailis D (2012) Large sample inference for long memory processes. Imperial College Press, London

    Book  Google Scholar 

  • Guo H, Koul HL (2007) Nonparametric regression with heteroscedastic long memory errors. J Stat Plann Inference 137:379–404

    Article  MathSciNet  Google Scholar 

  • Guo H, Koul HL (2008) Asymptotic inference in some heteroscedastic regression models with long memory design and errors. Ann Stat 36:458–487

    Article  MathSciNet  Google Scholar 

  • Haldrup N (1994) Heteroscedasticity in non-stationary time series, some Monte Carlo evidence. Stat Pap 35:287

    Article  MathSciNet  Google Scholar 

  • Hart JD (1997) Nonparametric smoothing and lack-of-fit tests. Springer, New York

    Book  Google Scholar 

  • Hassler U, Scheithauer J (2011) Detecting changes from short to long memory. Stat Pap 52:847–870

    Article  MathSciNet  Google Scholar 

  • Ho H, Hsu N (2005) Polynomial trend regression with long memory errors. J Time Ser Anal 26:323–354

    Article  MathSciNet  Google Scholar 

  • Koul HL (1996) Asymptotics of M-estimators in non-linear regression with long-range dependent errors. In: Robinson P, Rosenblatt M (eds) Athens Conference on Applied Probability and Time Series Analysis, II, In Memory of Hannan EJ. Lecture Notes in Statistics, vol 115, pp 272–290. Springer, New York

  • Koul HL, Mukherjee K (1993) Asymptotics of R-, MD- and LAD- estimators in linear regression models with long range dependent errors. Probab Theory Relat Fields 95:535–553

    Article  MathSciNet  Google Scholar 

  • Koul HL, Surgailis D (2002) Asymptotic expansion of the empirical process of long memory moving averages. In: Dehling H, Mikosch T, S${ }$ensen M (eds) Empirical Process Techniques for Dependent Data, pp 213–239. Birkhäser, Boston

  • Koul HL, Wang L (2017) Smooth estimation of error distribution in nonparametric regression under long memory. In: Antoch J, Jurec̆ková J, Maciak M, Pes̆ta M (eds) Analytical methods in statistics. Springer proceedings in mathematics & statistics, vol 193. Springer, Switzerland, pp 73–104

    Google Scholar 

  • Koul HL, Baillie R, Surgailis D (2004) Regression model fitting with a long memory covariate process. Econom Theory 20:485–512

    Article  MathSciNet  Google Scholar 

  • Masry E, Mielniczuk J (1999) Local linear regression estimation for time series with long-range dependence. Stoch Process Appl 82:173–193

    Article  MathSciNet  Google Scholar 

  • Müller UU, Schick A, Wefelmeyer W (2009) Estimating the innovation distribution in nonparametric autoregression. Probab Theory Relat Fields 144:53–77

    Article  MathSciNet  Google Scholar 

  • Robinson PM (1994) Semiparametric analysis of long memory time series. Ann Stat 22:515–539

    Article  MathSciNet  Google Scholar 

  • Robinson PM (1995) Gaussian semiparametric estimation of long range dependence. Ann Stat 23:1630–1661

    Article  MathSciNet  Google Scholar 

  • Robinson PM (1997) Large-sample inference for nonparametric regression with dependent errors. Ann Stat 25:2054–2083

    Article  MathSciNet  Google Scholar 

  • Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5–19

    Article  MathSciNet  Google Scholar 

  • Robinson PM, Hidalgo FJ (1997) Time series regression with long-range dependence. Ann Stat 25:77–104

    Article  MathSciNet  Google Scholar 

  • Sibbertsen P (2004) Long memory versus structural breaks: an overview. Stat Pap 45:465–515

    Article  MathSciNet  Google Scholar 

  • Stute W (1997) Nonparametric model checks for regression. Ann Stat 25:613–641

    Article  MathSciNet  Google Scholar 

  • Surgailis D (2003) Non-CLTs: U-statistics, multinomial formula and approximations of multiple Itô-Wiener integrals. In: Doukhan P, Oppenheim G, Taqqu MS (eds) Theory and applications of long-range dependence. Birkhäuser, Boston, pp 129–142

    MATH  Google Scholar 

  • Wang L, Akritas MG, Keilegom IV (2008) An ANOVA-type nonparametric diagnostic test for heteroscedastic regression models. J Nonparametr Stat 20:365–382

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author sincerely wishes to thank the two referees and the editors for their queries and many insightful remarks and suggestions which have led to significantly improving the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Wang.

Additional information

Research supported by National Natural Science Foundation of China (NSFC) Grant (Nos. 11671194 and 11501287).

Appendix

Appendix

Proof of Theorem 1

The proof is based on the well-known chaining argument of Dehling and Taqqu (1989) [see also Giraitis et al. (2012, Theorem 10.2.3 and Lemma 13.2.3)]. Hence we shall only briefly indicate the extra steps that are needed for us to achieve our goal. Let \(h_3(x)=\) E \([-\sigma (X_0)I(X_0\le x)f_X'(X_0)/f_X(X_0)]\), and \(\xi _i(x)=\sigma (X_i)I(X_i \le x)-h_1(x)-h_3(x)(X_i-m_X)\). Then we define \(W_n(x)=\sum _{i=1}^n \xi _i(x) \varepsilon _i\), and \(W_n(x, y) = W_n(x)-W_n(y)\), \(-\infty<y \le x <\infty \).

Under the null hypothesis, by (1) and (6),

$$\begin{aligned} V_n(x)=W_n(x)+ h_1(x) S_{n1}+h_3(x)\sum _{i=1}^n (X_i-m_X)\varepsilon _i. \end{aligned}$$
(12)

Let \(H_1(x,y)=\int _y^x \sigma (u)|f_X'(u)| du\). Note that, by Assumptions (A3) and (A4), we obtain \(\sup _{x\in {\mathbb {R}}} h_1(x)<\infty \), and

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}|h_3(x)|\le \sup _{x\in {\mathbb {R}}}\Big \{\text{ E }[\sigma ^2 (X_0)I(X_0\le x)] \text{ E }\big [|f_X'(X_0)|^2/f^2_X(X_0)\big ]\Big \}^{1/2}<\infty , \end{aligned}$$

and similarly, \(\sup _{x, y\in {\mathbb {R}}}|H_1(x, y)|<\infty \). In addition,

$$\begin{aligned} \int |u f_X'(u)| du\le \Big \{\text{ E }X_0^2 \text{ E }\big [|f_X'(X_0)|^2/f^2_X(X_0)\big ]\Big \}^{1/2}<\infty . \end{aligned}$$

Therefore, by (3) and (A2\('\)), for some large enough N,

$$\begin{aligned}&\text{ E } W_n^2(x, y) \nonumber \\&\quad =n\text{ E } (\xi _0 (x)-\xi _0(y))^2\text{ E }\varepsilon _0^2+\sum _{i\not =j}\gamma (i-j)\text{ Cov } \Big ((\xi _i(x)-\xi _i(y)), (\xi _j(x)-\xi _j(y))\Big )\nonumber \\&\quad \le C n +C\Big (\sum _{0<|i-j|\le N}+\sum _{|i-j|>N}\Big )\gamma (i-j)\int \prod _{k=1}^2\Big (\sigma (u_k) I(y<u_k\le x)\nonumber \\&\qquad -h_1(x, y)-h_3(x, y)(u_k-m_X)\Big )\big (f_{X, i,j}(u_1,u_2 )-f_X(u_1) f_X(u_2)\big ) du_1 du_2\nonumber \\\nonumber \\&\quad \le Cn+C n\sum _{|k|>N} |k|^{2d+2d_X-2}\nonumber \\&\quad \quad \times \,\Big (\int |\sigma (u) I(y<u\le x)-h_1(x, y)-h_3(x, y)(u-m_X)| |f_X'(u)|du\Big )^2 \nonumber \\&\quad \le Cn +C n^{2d+2d_X}\nonumber \\&\quad \quad \times \,\Big (C h_1(x, y)+\int _y^x \sigma (u)|f_X'(u)| du+|h_3(x, y)|\int |(u-m_X) f_X'(u)| du\Big )^2\nonumber \\&\quad \le Cn +C n^{2d+2d_X}\Big (h_1(x, y)+H_1(x,y)+|h_3(x, y)|\Big )^2\nonumber \\&\quad \le Cn +C n^{2d+2d_X} (h_1(x, y)+H_1(x, y))^2\nonumber \\&\quad \le C n^{2d+1-\kappa } (h_1(x, y)+H_1(x, y))^2, \end{aligned}$$
(13)

where \(\kappa =\min (2d, 1-2d_X)>0\). Now using (13) instead and along the same lines as those of the proofs of Theorem 10.2.3 and Lemma 13.2.3 of Giraitis et al. (2012), we obtain

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}n^{-1/2-d}|W_n(x)|=o_P(1). \end{aligned}$$
(14)

Moreover, by (3) and (5),

$$\begin{aligned} \text{ E }\Big (n^{-1/2-d}\sum _{i=1}^n (X_i-m_X)\varepsilon _i\Big )^2\le & {} Cn^{-2d}+n^{-1-2d}\sum _{i\not =j}\gamma _X(i-j) \gamma (i-j)\\= & {} O(n^{-2d})+O (n^{2d_X-1})=o(1). \end{aligned}$$

This implies that

$$\begin{aligned} n^{-1/2-d}\sum _{i=1}^n (X_i-m_X)\varepsilon _i=o_P(1). \end{aligned}$$
(15)

Then combining (8), (12), (14) and (15) concludes the proof of (a).

On the other hand, under the alternative,

$$\begin{aligned} V_n(x)= & {} W_n(x)+ h_1(x) S_{n1}+h_3(x)\sum _{i=1}^n (X_i-m_X)\varepsilon _i\nonumber \\&+nh_2(x)+h_4(x)S_{n2}+W_n^*(x), \end{aligned}$$
(16)

where \(h_4(x)=\) E \([-(\mu (X_0) -\mu _0(X_0))I(X_0\le x)f_X'(X_0)/f_X(X_0)]\), \(W_n^*(x)=\sum _{i=1}^n \xi _i^*(x)\) and \(\xi _i^*(x)=(\mu (X_i)-\mu _0(X_i))I(X_i\le x)-h_2(x)-h_4(x)(X_i-m_X)\). Let \(H_2(x,y)=\int _y^x |(\mu (u)-\mu _0(u))f_X'(u)| du\). Similarly to (13) and (14), we obtain

$$\begin{aligned}&\text{ E } (W_n^*(x, y))^2\\&\quad =n\text{ E } (\xi _0^* (x)-\xi _0^*(y))^2+\sum _{i\not =j}\text{ Cov } \Big ((\xi _i^*(x)-\xi _i^*(y)), (\xi _j^*(x)-\xi _j^*(y))\Big )\\&\quad \le C n +C\left( \sum _{0<|i-j|\le N}+\sum _{|i-j|>N}\right) \int \prod _{k=1}^2\Big ((\mu (u_k)-\mu _0 (u_k)) I(y<u_k\le x)\\&\qquad -h_2(x, y)-h_4(x, y)(u_k-m_X)\Big )\big (f_{X,i,j}(u_1,u_2 )-f_X(u_1) f_X(u_2)\big ) du_1 du_2\\&\quad \le Cn+C n\sum _{|k|>N} |k|^{2d_X-1}\\&\quad \left( \int |(\mu (u)-\mu _0 (u)) I(y<u\le x)-h_2(x, y)-h_4(x, y)(u-m_X)| |f_X'(u)|du\right) ^2 \\&\quad \le Cn +C n^{2d_X+1}(|h_2(x, y)|+H_2(x, y))^2\\&\quad \le C n^{2d+1-(2d-2d_X)} (|h_2(x, y)|+H_2(x, y))^2. \end{aligned}$$

By \(d_X<d\), we arrive at

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}n^{-1/2-d}|W_n^*(x)|=o_P(1). \end{aligned}$$
(17)

Since \(\text{ E }S^2_{n2}=O(n^{2d_X+1})=o (n^{2d+1})\), the proof of part (b) is completed upon combining (8) and (14)–(17). \(\square \)

Proof of Theorem 2

Let \(\phi (X_i):=\dot{\mu }_0 (X_i, \beta )\sigma (X_i)\) and \(\phi ^{(l)}(X_i)\) be the l-th element of \(\phi (X_i)\), \(l=1,\ldots , q\). Then, under the null hypothesis,

$$\begin{aligned} M(\beta )=\sum _{i=1}^n (\phi (X_i)-\text{ E }\phi (X_i))\varepsilon _i+\text{ E }[\phi (X_0)]\sum _{i=1}^n\varepsilon _i. \end{aligned}$$

Similarly to the proof of (13), by (3), Assumptions (A2\('\)) and (B1), for some large enough N, and any \(1\le l, r\le q\),

$$\begin{aligned}&\text{ Cov } \left( \sum _{i=1}^n (\phi ^{(l)}(X_i)-\text{ E }\phi ^{(l)}(X_i))\varepsilon _i, \sum _{i=1}^n (\phi ^{(r)}(X_i)-\text{ E }\phi ^{(r)}(X_i))\varepsilon _i\right) \\&\quad \le n\text{ E } \Vert \phi (X_0)\Vert ^2\text{ E }\varepsilon _0^2+\sum _{i\not =j}\gamma (i-j)\text{ Cov } (\phi ^{(l)}(X_i), \phi ^{(r)}(X_j) )\\&\quad \le C n +C\sum _{|i-j|>N}\gamma (i-j)\int \phi ^{(l)}(u_1)\phi ^{(r)}(u_2) (f_{X, i,j}(u_1,u_2 )\\&\qquad -f_X(u_1) f_X(u_2)) du_1 du_2\\&\quad \le Cn+C n\sum _{|k|>N} |k|^{2d+2d_X-2}\left( \int \Vert \dot{\mu }_0 (u, \beta )\sigma (u)\Vert |f_X'(u)|du\right) ^2 \\&\quad \le Cn +C n^{2d+2d_X}. \end{aligned}$$

Since \(\sum _{i=1}^n\varepsilon _i=O_P(\rho _n)\), this implies that

$$\begin{aligned} \Vert \rho _n^{-1}M(\beta )\Vert =\Big \Vert \rho _n^{-1}\text{ E }[\dot{\mu }_0 (X_0, \beta )\sigma (X_0)]\sum _{i=1}^n\varepsilon _i\Big \Vert +o_P(1)=O_P(1), \end{aligned}$$
(18)

where Assumption (B1) ensure that \(\text{ E }\Vert \dot{\mu }_0 (X_0, \beta )\sigma (X_0)\Vert <\infty \). In addition, from Assumptions (A4) and (B2),

$$\begin{aligned}&\text{ E }\big \Vert (\dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta ))\sigma (X_i)\big \Vert \\&\quad \le \big \{\text{ E }\big \Vert \dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\big \Vert ^2 \text{ E }\sigma ^2(X_i)\big \}^{1/2} =o(1). \end{aligned}$$

In a similar way as in (18), we obtain, for any \(u\in {\mathbb {R}}^q\),

$$\begin{aligned} \rho _n^{-1}\left\| \sum _{i=1}^n \big (\dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\big )\sigma (X_i)\varepsilon _i\right\| =o_P(1). \end{aligned}$$
(19)

Moreover, Assumptions (B1) and (B2), (9) and the ergodic theorem imply that, for any \(\Vert u\Vert \le k\) and \(0<k<\infty \),

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\big (\dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\big )\big (\mu _0 (X_i, \beta )-\mu _0 \big (X_i, \beta +a_n^{-1}u\big )\big )\nonumber \\&\quad =\frac{1}{n}\sum _{i=1}^n\big (\dot{\mu }_0\big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\big )\big (-a_n^{-1}u'\dot{\mu }_0 (X_i, \beta )+o_P\big (a_n^{-1}\Vert u\Vert \big )\big )\nonumber \\&\quad \le \frac{1}{n}\sum _{i=1}^n\Vert \dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\Vert \big (a_n^{-1}k\Vert \dot{\mu }_0 (X_i, \beta )\Vert +o_P\big (a_n^{-1}\big )\big )\nonumber \\&\quad =o_P\big (a_n^{-1}\big ). \end{aligned}$$
(20)

Thus (9), (19) and (20) yield

$$\begin{aligned}&M\big (\beta +a_n^{-1}u\big )-M(\beta )\\&\quad = \sum _{i=1}^n \dot{\mu }_0 (X_i, \beta )(\mu _0(X_i, \beta )-\mu _0 (X_i, \beta +a_n^{-1}u))\\&\qquad +\sum _{i=1}^n \big (\dot{\mu }_0 (X_i, \beta +a_n^{-1}u)-\dot{\mu }_0 (X_i, \beta ))(\mu _0 (X_i, \beta )-\mu _0 \big (X_i, \beta +a_n^{-1}u\big )\big )\\&\qquad +\sum _{i=1}^n\big (\dot{\mu }_0 \big (X_i, \beta +a_n^{-1}u\big )-\dot{\mu }_0 (X_i, \beta )\big )\sigma (X_i)\varepsilon _i.\\&\quad =-\rho _n n^{-1}\sum _{i=1}^n \dot{\mu }_0 (X_i, \beta )\big (\dot{\mu }_0' (X_i, \beta )u+o_P(\Vert u\Vert )\big )+o_P(\rho _n). \end{aligned}$$

Hence Assumption (B4) implies that

$$\begin{aligned} \big \Vert \rho _n^{-1}\big [M\big (\beta +a_n^{-1}u\big )-M(\beta )\big ]+Hu\big \Vert =o_P(1) \end{aligned}$$
(21)

for any \(\Vert u\Vert \le k\) and \(0<k<\infty \).

By (18), Assumption (B3) and Lemma 11.2.1 of Giraitis et al. (2012), we obtain

$$\begin{aligned} a_n\Vert \hat{\beta }-\beta \Vert =O_P(1). \end{aligned}$$
(22)

This, together with (21), yields

$$\begin{aligned} \beta -\hat{\beta }=-H^{-1}n^{-1}M(\beta )+o_P(1). \end{aligned}$$

Hence, under the null hypothesis and by (7) and (9) ,

$$\begin{aligned} \rho _n^{-1}\tilde{V}_n(x)= & {} \rho _n^{-1}V_n(x)-\rho _n^{-1}M'(\beta )H^{-1}n^{-1}\sum _{i=1}^n\dot{\mu }_0(X_i, \beta )I(X_i\le x)\\&+o_P(a_n\Vert \hat{\beta }-\beta \Vert ). \end{aligned}$$

The ergodic theorem implies that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \beta )I(X_i\le x)=\text{ E }[\dot{\mu }_0 (X_0, \beta )I(X_0\le x)]+o_P(1). \end{aligned}$$

Then, by (18) and the proof of Theorem 1, we arrive at

$$\begin{aligned} \rho _n^{-1}\tilde{V}_n(x)= & {} \rho _n^{-1}\tilde{h}_1(x) S_{n1}+\rho _n^{-1}W_n(x)+\rho _n^{-1}h_3(x)\sum _{i=1}^n (X_i-m_X)\varepsilon _i+o_P(1)\\= & {} \tilde{h}_1(x)\rho _n^{-1} S_{n1}+o_P(1). \end{aligned}$$

This yields the first part of Theorem 2.

Next, under the alternative, similarly to the proof of Theorem 1, we obtain

$$\begin{aligned} \tilde{V}_n(x)= & {} nh_2(x)+\tilde{h}_1(x) S_{n1}\\&+ W_n(x)+h_3(x)\sum _{i=1}^n (X_i-m_X)\varepsilon _i+h_4(x)S_{n2}+W_n^*(x)+o_P(1)\\= & {} nh_2(x)+\tilde{h}_1(x) S_{n1}+o_P(1). \end{aligned}$$

This implies the part (b) of Theorem 2. \(\square \)

The proof of Theorem 3 is facilitated by the following lemmas. Lemmas 1 and 2 follow immediately from Lemmas 1 and 2 of Koul and Wang (2017).

Lemma 1

Under the Assumptions (A2) and (C1),

$$\begin{aligned} \sup _{x\in {\mathbb {R}}} | f_n(x)-f_X(x) |=O_P\big (\max \big \{n^{d_X-1/2}b_n^{-1}, b_n\big \}\big ). \end{aligned}$$

To state the next result, recall the definition of \(S_{n1}\) from (8), let \(\mu _\sigma =\) E\(\sigma (X_0)\), and let

$$\begin{aligned} \hat{Z}_i= & {} \hat{\mu }_n(X_i)-\mu (X_i), \,\, i=1,\ldots , n, \quad Z_n=\mu _\sigma n^{-1}S_{n1},\\ \xi _n= & {} \max (n^{1/2}h_n^2\log n,\,\, h_n^{-1/2}\log n,\,\, n^{d_X}\log n,\,\, n^{d} h_n^{1/2}, n^{d+d_X-1/2}h_n^{-1}\log n). \end{aligned}$$

Lemma 2

Assume (A2), (A3) and (C2)–(C6). Then

$$\begin{aligned} \sum _{i=1}^n \big (\hat{Z}_i-Z_n\big )^2w_i=O_P\big (\xi _n^2\big ). \end{aligned}$$

Since \(Z_n=O_P(n^{d-1/2})\) and \(\max _{1\le i\le n} |w_i|\le 1\), by Assumption (C6) and Lemma 2, we obtain

$$\begin{aligned} \sum _{i=1}^n \hat{Z}_i^2w_i=O_P\big (\xi _n^2\big )+O_P(n^{2d})=O_P(n^{2d}). \end{aligned}$$
(23)

Let

$$\begin{aligned} \tilde{\sigma }_{-i}^2 (x)=\frac{1}{(n-1) f_n(x)}\sum _{j\not =i} K_{b_n} (x-X_j) \varepsilon _{j}^2 \sigma ^2 (X_j)w_j. \end{aligned}$$

Lemma 3

Under the Assumptions (A2), (A3), (C1), (C4)–(C5) and (C7),

$$\begin{aligned} \sum _{i=1}^n \big |\tilde{\sigma }_{-i} (X_i)-w_i^{1/2}\sigma (X_i)\big |^2=O_P\big (\max \big \{n^{1/2}b_n^{-1/2}\log n, n^{2d}\log n, nb_n^{1/2}(\log n)^{1/2}\big \}\big ). \end{aligned}$$

Proof

Note that

$$\begin{aligned} \left( \sum _{i=1}^n \big |\tilde{\sigma }_{-i} (X_i)-w_i^{1/2}\sigma (X_i)\big |^2\right) ^2\le & {} n \sum _{i=1}^n \big |\tilde{\sigma }_{-i} (X_i)-w_i^{1/2}\sigma (X_i)\big |^4\\\le & {} n \sum _{i=1}^n \big |\tilde{\sigma }_{-i}^2 (X_i)-w_i\sigma ^2 (X_i)\big |^2. \end{aligned}$$

Therefore it suffices to show

$$\begin{aligned} \sum _{i=1}^n \big |\tilde{\sigma }_{-i}^2 (X_i)-w_i\sigma ^2 (X_i)\big |^2=O_P\big (\max \big \{b_n^{-1}\log ^2 n, n^{4d-1}\log ^2 n, nb_n\log n\big \}\big ).\nonumber \\ \end{aligned}$$
(24)

To prove (24), by Assumption (C4) and Lemma 1, it suffices to show

$$\begin{aligned}&\frac{1}{(n-1)^2}\sum _{i=1}^n \text{ E } \Big (\sum _{j\not =i}K_{b_n} (X_i-X_j)\sigma ^2 (X_j)w_j (\varepsilon _j^2-1)\Big )^2\nonumber \\&\quad =O(b_n^{-1})+O(n^{4d-1}) \end{aligned}$$
(25)

and

$$\begin{aligned}&\sum _{i=1}^n \text{ E }\Big (\frac{1}{f_X(X_i)}\sum _{j\not =i}K_{b_n} (X_i-X_j)\sigma ^2 (X_j)w_j-(n-1)w_i\sigma ^2 (X_i)\Big )^2\nonumber \\&\quad =O(n^2b_n^{-1}\log ^2 n)+O(n^3b_n\log n). \end{aligned}$$
(26)

Note that the left hand side of (25) is less than or equal to \((n-1)^{-2}\sum _{i=1}^n (A_{1i}+A_{2i})\), where

$$\begin{aligned} A_{1i}= \sum _{j\not =i}\text{ E } \Big ( K_{b_n} (X_i-X_j)\sigma ^2 (X_j)w_j\Big )^2\text{ E }(\varepsilon _j^2-1)^2, \end{aligned}$$

and

$$\begin{aligned} A_{2i}= & {} \sum _{j\not =k, j, k\not =i}\text{ E } \Big ( K_{b_n} (X_i-X_j)K_{b_n} (X_i-X_k)\sigma ^2 (X_j)\sigma ^2(X_k)w_jw_k\Big ) \text{ E }\\&\big [\big (\varepsilon _j^2-1\big )\big (\varepsilon _k^2-1\big )\big ]. \end{aligned}$$

Since E\(\sigma ^4(X_0)<\infty \) and E\(\varepsilon _0^4<\infty \), we obtain

$$\begin{aligned} \frac{1}{(n-1)^2}\sum _{i=1}^n A_{1i}=O\big ( b_n^{-1}\big ). \end{aligned}$$
(27)

Moreover, by the result from Guo and Koul (2008),

$$\begin{aligned} \text{ E }\big [\big (\varepsilon _j^2-1\big )\big (\varepsilon _k^2-1\big )\big ]\le C |j-k|^{4d-2}, \ \ |j-k|\rightarrow \infty . \end{aligned}$$

This yields

$$\begin{aligned} A_{2i}= & {} \sum _{j\not =k, j, k\not =i} \text{ E }\big [\big (\varepsilon _j^2-1\big )\big (\varepsilon _k^2-1\big )\big ]\int K(u) K(v) \sigma ^2(x-b_nu)\sigma ^2 (x-b_n v) \\&\cdot w(x-b_nu) w(x-b_n v) f_{X,i ,j,k}(x, x-b_n u, x-b_nv)dx du dv \\\le & {} C n+C\sum _{|j-k|>N}|j-k|^{4d-2}\\= & {} O(n)+O(n^{4d}), \,\,\,\text{ not } \text{ depending } \text{ on } i. \end{aligned}$$

This implies that

$$\begin{aligned} \frac{1}{(n-1)^2}\sum _{i=1}^n A_{2i}=O(1)+O(n^{4d-1}). \end{aligned}$$
(28)

The claim (25) follows from the bounds (27) and (28). Similarly, the left hand side of (26) equals to \(\sum _{i=1}^n B_i:=\sum _{i=1}^n (B_{1i}+B_{2i}-2B_{3i}+(n-1)^2\text{ E } [w^2(X_0)\sigma ^4(X_0)])\), where

$$\begin{aligned} B_{1i}= & {} \sum _{j\not =i}\text{ E } \left( \frac{ K^2_{b_n} (X_i-X_j)\sigma ^4 (X_j)w_j^2}{f_X^2(X_i)}\right) ,\\ B_{2i}= & {} \sum _{j\not =k, j, k\not =i}\text{ E } \left( \frac{ K_{b_n} (X_i-X_j)K_{b_n} (X_i-X_k)\sigma ^2 (X_j)\sigma ^2(X_k)w_jw_k}{f_X^2(X_i)}\right) , \end{aligned}$$

and

$$\begin{aligned} B_{3i}= (n-1)\sum _{j\not =i}\text{ E } \left( \frac{ K_{b_n} (X_i-X_j)\sigma ^2 (X_j)\sigma ^2(X_i)w_jw_i}{f_X(X_i)}\right) . \end{aligned}$$

Therefore, by (C4),

$$\begin{aligned} B_{1i}=O(nb_n^{-1}\log ^2 n). \end{aligned}$$

Again, by (C4), (C5), (A2\('\)) and (A3),

$$\begin{aligned} B_{2i}= & {} \sum _{j\not =k, j, k\not =i}\int \frac{K(u) K(v) \sigma ^2(x-b_nu)\sigma ^2 (x-b_n v)w(x-b_nu) w(x-b_n v)}{f_X^2(x)}\\&\quad \times \, f_{X,i,j, k}(x, x-b_nu, x-b_nv) dx du dv\\= & {} \sum _{j\not =k, j, k\not =i}\int \frac{K(u) K(v) \sigma ^2(x-b_nu)\sigma ^2 (x-b_n v)w(x-b_nu) w(x-b_n v)}{f_X^2(x)}\\&\times \, f_X(x)f_X(x-b_nu) f_X(x-b_nv) dx du dv\\&+\sum _{j\not =k, j, k\not =i}\int \frac{K(u) K(v) \sigma ^2(x-b_nu)\sigma ^2 (x-b_n v)w(x-b_nu) w(x-b_n v)}{f_X^2(x)}\\&\times \,\big (f_{X,i,j, k}(x, x-b_nu, x-b_nv)-f_X(x) f_{X,j, k}(x-b_nu, x-b_nv)\big ) dx du dv\\&+\sum _{j\not =k, j, k\not =i}\int \frac{K(u) K(v) \sigma ^2(x-b_nu)\sigma ^2 (x-b_n v)w(x-b_nu) w(x-b_n v)}{f_X^2(x)}f_X(x)\\&\times \, \big (f_{X,j, k}(x-b_nu, x-b_nv)-f_X(x-b_nu) f_X(x-b_nv)\big )dx du dv\\\le & {} (n-1)^2\text{ E }[w^2(X_0)\sigma ^4 (X_0)]+O(n^{2}b_n\log n)+O(n\log ^2 n)\\&+\,O(\log ^2 n)\Big [\sum _{|j-i|>N}|j-i|^{2d_X-1} +\sum _{|k-i|>N}|i-k|^{2d_X-1}+\sum _{|j-k|>N}|j-k|^{2d_X-1}\Big ]. \end{aligned}$$

This implies that

$$\begin{aligned}&B_{2i}-(n-1)^2\text{ E }\big [w^2(X_0)\sigma ^4 (X_0)\big ] = O(n^2b_n\log n)+O\big (n^{2d_X+1}\log ^2 n\big ). \end{aligned}$$

Furthermore, in a similar way,

$$\begin{aligned} B_{3i}-(n-1)^2\text{ E }\big [w^2(X_0)\sigma ^4 (X_0)\big ]=O(n^2b_n\log n)+O\big (n^{2d_X+1}\log ^2 n\big ). \end{aligned}$$

These bounds imply that

$$\begin{aligned} B_i=O\big (nb_n^{-1}\log ^2 n\big )+O\big (n^2b_n\log n\big )+O\big (n^{2d_X+1}\log ^2 n\big ),\ \ \text{ not } \text{ depending } \text{ on } i. \end{aligned}$$

Then, by Assumption (C7), we arrive at

$$\begin{aligned} \sum _{i=1}^n B_i=O\big (n^2b_n^{-1}\log ^2 n\big )+O\big (n^3 b_n\log n\big ). \end{aligned}$$

This completes the proof of Lemma 3. \(\square \)

Lemma 4

Under the Assumptions (A2), (A3) and (C),

$$\begin{aligned} \sum _{i=1}^n |\hat{\sigma }_{-i} (X_i)-\tilde{\sigma }_{-i} (X_i)|^2=O_P(n^{d+1/2}\log n). \end{aligned}$$

Proof

It suffices to show

$$\begin{aligned}&\sum _{i=1}^n \big |\hat{\sigma }^2_{-i} (X_i)-\tilde{\sigma }^2_{-i} (X_i)\big |=O_P(n^{d+1/2}\log n). \end{aligned}$$

Recall that \(\hat{Z}_j=\sigma (X_j)\varepsilon _j-\hat{\varepsilon }_j\). Then

$$\begin{aligned}&(n-1)\big (\hat{\sigma }^2_{-i} (X_i)-\tilde{\sigma }^2_{-i} (X_i)\big )\nonumber \\&\quad = \frac{1}{f_n(X_i)}\left\{ \sum _{j\not =i} K_{b_n}(X_i-X_j)\hat{Z}_j^2w_j-2\sum _{j\not =i} K_{b_n}(X_i-X_j)\sigma (X_j) \varepsilon _j\hat{Z}_jw_j\right\} \nonumber \\&\quad := I_{1i}+I_{2i}. \end{aligned}$$
(29)

Since, for any \(i\not =j\),

$$\begin{aligned} \text{ E }|K_{b_n}(X_i-X_j)|=\int K(u) f_{X, i, j}(x, x-b_n u) dx du=O(1), \end{aligned}$$

it follows from Lemma 1 and (23) that

$$\begin{aligned} \sum _{i=1}^n |I_{1i}|\le O_P(n\log n)\sum _{j=1}^n \hat{Z}_j^2w_j=O_P(n^{2d+1}\log n). \end{aligned}$$
(30)

On the other hand,

$$\begin{aligned} \text{ E }|K_{b_n}(X_i-X_j)\sigma (X_j)\varepsilon _j|\le C\int K(u)\sigma (x-b_n u) f_{X, i, j}(x, x-b_n u) dx du=O(1). \end{aligned}$$

Hence

$$\begin{aligned} \sum _{i=1}^n |I_{2i}|\le & {} O_P(n\log n)\sum _{j=1}^n |\hat{Z}_jw_j |\nonumber \\\le & {} O_P( n^{3/2}\log n)\Big |\sum _{j=1}^n\hat{Z}_j^2w_j\Big |^{1/2}=O_P(n^{d+3/2}\log n). \end{aligned}$$
(31)

Now (29)-(31) concludes the proof of Lemma 4. \(\square \)

Proof of Theorem 3

First we observe that

$$\begin{aligned}&|\hat{h}_1(x)-h_1(x)|\nonumber \\&\quad \le \frac{1}{n}\sum _{i=1}^n|\hat{\sigma }_{-i}(X_i)-\sigma (X_i)|I(X_i\le x)+\Big |\frac{1}{n}\sum _{i=1}^n\sigma (X_i)I(X_i\le x)-h_1(x)\Big |.\qquad \quad \end{aligned}$$
(32)

Note that

$$\begin{aligned} E|w(X_0)-1|\le & {} \Big |\int _{\tau _{1n}+r}^{\tau _{2n}-r} f_X(x)dx -1\Big | + \int _{\tau _{1n}}^{\tau _{1n}+r} f_X(x)dx+ \int _{\tau _{2n}-r}^{\tau _{2n}} f_X(x)dx \\\longrightarrow & {} 0. \end{aligned}$$

Then, by Lemmas 3 and 4,

$$\begin{aligned}&\sum _{i=1}^n|\hat{\sigma }_{-i}(X_i)-\sigma (X_i)|^2\nonumber \\&\quad \le C\sum _{i=1}^n|\hat{\sigma }_{-i}(X_i)-\tilde{\sigma }_{-i} (X_i)|^2+C\sum _{i=1}^n\big |\tilde{\sigma }_{-i}(X_i)-w_i^{1/2}\sigma (X_i)\big |^2\nonumber \\&\qquad +C\sum _{i=1}^n\big |\big (w_i^{1/2}-1\big )\sigma (X_i)\big |^2\nonumber \\&\quad =O_P\big (n^{1/2}b_n^{-1/2}\log n\big )+O_P\big (nb_n^{1/2}\big (\log n)^{1/2}\big )+O_P\big (n^{d+1/2}\log n\big )+o_P(n)\nonumber \\&\quad =o_P(n). \end{aligned}$$
(33)

This implies that

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}\frac{1}{n}\sum _{i=1}^n|\hat{\sigma }_{-i}(X_i)-\sigma (X_i)|I(X_i\le x)=o_P(1). \end{aligned}$$
(34)

Moreover, the ergodic theorem implies that

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}\left| \frac{1}{n}\sum _{i=1}^n\sigma (X_i)I(X_i\le x)-h_1(x)\right| =o_P(1). \end{aligned}$$
(35)

The proof is completed upon combining (32), (34) and (35). \(\square \)

Proof of Theorem 4

By Assumption (B2) and (22),

$$\begin{aligned}&\left\| \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))I(X_i\le x)\right\| \\&\quad \le \frac{1}{n}\sum _{i=1}^n\Vert \dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta )\Vert =o_P(1). \end{aligned}$$

Thus

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })I(X_i\le x)-\text{ E }[\dot{\mu }_0(X_0, \beta )I(X_0\le x)]\\&\quad = \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))I(X_i\le x)+\frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \beta )I(X_i\le x)\\&\qquad -\text{ E }[\dot{\mu }_0(X_0, \beta )I(X_0\le x)]\\&\quad =\frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \beta )I(X_i\le x)-\text{ E }[\dot{\mu }_0(X_0, \beta )I(X_0\le x)]+o_P(1). \end{aligned}$$

Then it follows from the ergodic theorem that

$$\begin{aligned} \sup _{x\in {\mathbb {R}}}\left\| \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })I(X_i\le x)-\text{ E }[\dot{\mu }_0(X_0, \beta )I(X_0\le x)]\right\| =o_P(1). \end{aligned}$$
(36)

Similarly, by Assumptions (B1), (B2) and (22),

$$\begin{aligned}&\left\| \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))\dot{\mu }_0'(X_i, \beta )\right\| \\&\quad \le \frac{1}{n}\sum _{i=1}^n\Vert \dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta )\Vert \Vert \dot{\mu }_0(X_i, \beta )\Vert \\&\quad =\text{ E }(\Vert \dot{\mu }_0(X_0, \hat{\beta })-\dot{\mu }_0(X_i, \beta )\Vert \Vert \dot{\mu }_0(X_0, \beta )\Vert )+o_P(1)\\&\quad \le \big \{\text{ E }\Vert \dot{\mu }_0(X_0, \hat{\beta })-\dot{\mu }_0(X_i, \beta )\Vert ^2 \text{ E }\Vert \dot{\mu }_0(X_0, \beta )\Vert ^2\big \}^{1/2}+o_P(1)=o_P(1). \end{aligned}$$

This implies that

$$\begin{aligned}&\left\| \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })\dot{\mu }_0'(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta )\dot{\mu }_0'(X_i, \beta ))\right\| \\&\quad = \left\| \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))\dot{\mu }_0'(X_i, \beta )\right\| \\&\qquad +\,\left\| \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))'\right\| \\&\quad =o_P(1). \end{aligned}$$

Then the ergodic theorem yields that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })\dot{\mu }_0'(X_0, \hat{\beta })=H+o_P(1). \end{aligned}$$
(37)

Using similar arguments and by (33), we obtain

$$\begin{aligned}&\left\| \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })(\hat{\sigma }_{-i}(X_i)-\sigma (X_i))\right\| \\&\quad \le \Big \{\frac{1}{n}\sum _{i=1}^n\Vert \dot{\mu }_0(X_i, \hat{\beta })\Vert ^2 \frac{1}{n}\sum _{i=1}^n|\hat{\sigma }_{-i}(X_i)-\sigma (X_i)|^2\Big \}^{1/2}=o_P(1) \end{aligned}$$

and

$$\begin{aligned} \left\| \frac{1}{n}\sum _{i=1}^n(\dot{\mu }_0(X_i, \hat{\beta })-\dot{\mu }_0(X_i, \beta ))\sigma (X_i)\right\| =o_P(1). \end{aligned}$$

This means that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \hat{\beta })\hat{\sigma }_{-i}(X_i)= & {} \frac{1}{n}\sum _{i=1}^n\dot{\mu }_0(X_i, \beta )\sigma (X_i)+o_P(1)\nonumber \\= & {} \text{ E }[\dot{\mu }_0(X_0, \beta )\sigma (X_0)]+o_P(1). \end{aligned}$$
(38)

Combining (36)–(38), Theorem 4 follows from Theorem 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. Lack of fit test for long memory regression models. Stat Papers 61, 1043–1067 (2020). https://doi.org/10.1007/s00362-017-0974-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0974-9

Keywords

Mathematics Subject Classification

Navigation