Skip to main content
Log in

Study of RbCl quantum pseudodot qubits by using of non-extensive entropies

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, an electron which is strongly coupled to the strong electron–phonon (e–p) in RbCl quantum pseudodot qubit is considered. First, we employ the Pekar variational method and obtain the eigenenergies and eigenfunctions of the ground and the first excited states of the system. Then, we have employed three different entropies such as Tsallis, Landsberg–Vedral, and Escort for the system subjected to an applied electric field. In this regard, we have studied the effect of polaronic radius, electric field, e–p coupling strength, and non-extensive parameter. It is found that the entropies oscillate with passing time. The entropies increase with enhancing electric field, e–p coupling strength and decrease with polaronic radius. The results show that the missing information in the RbCl pseudodot qubit can be controlled by changing the system parameters. According to the results, it is deduced that the entropy is an important quantity to display the total storage or missing information in a qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S H Chen J. Low. Temp. Phys.170 108 (2013)

  2. R Khordad, B Mirhosseini and H Bahramiyan Opt. Quant. Electron.48 122 (2016)

    Article  Google Scholar 

  3. R Khordad and H R Rastegar Sedehi Superlatt. Microstruct.101 559 (2017)

    Article  ADS  Google Scholar 

  4. L Q Feng and J L Xiao Opt. Quant. Electron.48 459 (2016)

    Article  Google Scholar 

  5. E Togan, Y Chu, A S Trifonov, L Jiang, J Maze, L Childress, M V G Dutt, A S S \( \phi \) rensen, R Hemmer, A S Zibrov and M D Lukin Nature466 730 (2010)

    Google Scholar 

  6. R Roloff, T Eissfeller, P Vogl New J. Phys.12 093012 (2010)

    Article  Google Scholar 

  7. M A Nielsen and I L Chang Computation and Quantum Information (Cambridge: Cambridge University Press) p 38 (2000)

  8. M Mosca Quantum Algorithms Computational Complexity (New York: Springer) p 83 (2012)

  9. G Passante, O Moussa, D A Trottier and R Laamme Phys. Rev. A84 044302 (2011)

    Article  Google Scholar 

  10. C Weedbrook, S Pirandola, R Garcia-Patron, N J Cerf, T C Ralph, J H Shapiro and S Lloyd Rev. Mod. Phys.84 621 (2012)

    Article  ADS  Google Scholar 

  11. G Feng, G Xu and G Long Phys. Rev. Lett.110 190501 (2013)

    Article  ADS  Google Scholar 

  12. P Schindler, J T Barreiro, T Monz, V Nebendahl, D Nigg, M Chwalla, M Hennrich and R Blatt Science332 1059 (2011)

    Google Scholar 

  13. Y Sun, Z H Ding and J L Xiao J. Electron. Mater.45 3576 (2016)

    Article  ADS  Google Scholar 

  14. J Gorman, D G Hasko and D A Williams Phys. Rev. Lett.95 090502 (2005)

    Article  ADS  Google Scholar 

  15. J L Xiao, Int. J. Theor. Phys.55 (2016) 4918.

    Article  Google Scholar 

  16. R Khordad and H R R Sedehi Indian J. Phys.91 825 (2017)

    Article  ADS  Google Scholar 

  17. H Bahramiyan, R Khordad and H R R Sedehi Indian J. Phys.92 941 (2018)

    Google Scholar 

  18. J L Xiao, Chin. Phys. B. 26 (2017) 027104.

    Article  ADS  Google Scholar 

  19. Y J Chen and J L Xiao Acta Phys. Sinica57 6758 (2008)

    Google Scholar 

  20. J L Xiao Mod. Phys. Lett. B29 1550098 (2015)

  21. S M Ikhdair and M Hamzavi Physica B407 4198 (2012)

    Article  ADS  Google Scholar 

  22. J L Xiao Quantum Inf. Process.12 3707 (2013)

  23. X J Ma, B Qi and J L Xiao J. Low Temp. Phys.180 315 (2015)

    Article  ADS  Google Scholar 

  24. R Khordad and A Ghanbari Opt. Quant. Electron.49 76 (2017)

    Article  Google Scholar 

  25. R Khordad Solid State Sciences12 1253 (2010)

  26. S I Pekar and M F Deigen Zh. Eksp. Teor. Fiz.18 481 (1948)

    Google Scholar 

  27. S I Pekar Untersuchungen uber die Elektronen-theorie der Kristalle (Berlin: Akademie Verlag) p 44 (1954)

  28. L D Landau and S I Pekar Zh. Eksp. Teor. Fiz.18 419 (1948)

    Google Scholar 

  29. C E Shannon Bell Syst Tech J,27 379 (1948)

  30. C Beck Contemp. Phys.50 495 (2009).

  31. P Peretto An Introduction to the Modeling of Neural Networks (Cambridge: Cambridge University Press) p 89 (1992)

  32. C Tsallis J. Stat. Phys.52 479 (1988)

  33. J F Bercher Phys. Lett. A375 2969 (2011)

  34. J T Devreese Polarons in ionic crystals and polar semiconductors (Amsterdam: North-Holland) p 76 (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H R Rastegar Sedehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedehi, H.R.R., Khordad, R. Study of RbCl quantum pseudodot qubits by using of non-extensive entropies. Indian J Phys 94, 605–611 (2020). https://doi.org/10.1007/s12648-019-01482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01482-y

Keywords

PACS No.

Navigation