Skip to main content
Log in

High 2,3-butanediol production from glycerol by Raoultella terrigena CECT 4519

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bioconversion of biodiesel-derived glycerol into 2,3-butanediol has received recently much attention due to its increasing surplus and its multiple uses in industry as bulk chemical. The influence of initial glycerol concentration on 2,3-butanediol production in batch runs has been studied. A concentration higher than 140 g/L produces an inhibitory effect on the final 2,3-butanediol concentration and its production rate. In batch mode, the highest yield respect to the theoretical maximum yield (71%) was reached employing 140 g/L as initial concentration 140 g/L. Based on these results, a high 2,3-butanediol production has been achieved through a fed-batch strategy. The reached 2,3-butanediol concentration was 90.5 g/L from pure glycerol and 80.5 g/L from raw glycerol. The 2,3-butanediol yield respect to the theoretical maximum yield was also improved through the fed-batch operation (90%). To date, this concentration is the highest produced amount employing as biocatalyst a non-pathogenic bacterium (level 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Acetic acid concentration (g/L)

Ac:

Acetoin concentration (g/L)

CDM:

Cell dry mass concentration (g/L)

Et:

Ethanol concentration (g/L)

G :

Glycerol concentration (g/L)

G C :

Consumed glycerol concentration (g/L)

G T :

Total fed glycerol concentration (g/L)

G 0 :

Initial glycerol concentration (g/L)

LA:

Lactic acid concentration (g/L)

P :

2,3-Butanediol productivity (g/L·h)

t :

Time (h)

Y :

2,3-Butanediol yield respect to the maximal theoretic yield (%)

2,3-BD:

2,3-Butanediol concentration (g/L)

References

  1. Bustamante D, Segarra S, Montesinos A, Tortajada M, Ramón D, Rojas A (2019) Improved Raoultella planticola strains for the production of 2,3-butanediol from glycerol. Fermentation 5:11–21. https://doi.org/10.3390/fermentation5010011

    Article  CAS  Google Scholar 

  2. Cao C, Zhang L, Gao J, Xu H, Xue F, Huang W, Li Y (2017) Research on the solid state fermentation of Jerusalem artichoke pomace for producing R, R-2,3-butanediol by Paenibacillus polymyxa ZJ-9. Appl Biochem Biotechnol 182:687–696. https://doi.org/10.1007/s12010-016-2354-7

    Article  CAS  PubMed  Google Scholar 

  3. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146–158. https://doi.org/10.1186/s13068-015-0336-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotech Adv 27:30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006

    Article  CAS  Google Scholar 

  6. Dai JY, Zhao P, Cheng XL (2015) Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 175(6):3014–3024. https://doi.org/10.1007/s12010-015-1481-x

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh AN, Nipanikar-Gokhale P, Jain R (2016) Engineering of Bacillus subtilis for the production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 179:321–331. https://doi.org/10.1007/s12010-016-1996-9

    Article  CAS  PubMed  Google Scholar 

  8. Doran PM (2013) Bioprocess engineering principles, 2nd edn. Academic Press, London

    Google Scholar 

  9. Gao J, Xu H, Li Q (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol 101(18):7076–7082. https://doi.org/10.1016/j.biortech.2010.03.143

    Article  CAS  Google Scholar 

  10. Gerpen JV (2005) Biodiesel processing and production. Fuel Sci Technol 86:1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  11. Guo X, Wang Y, Guo J, Wang Q, Zhang Y, Chen Y, Zhang C, Xiao D (2017) Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating fed-batch fermentation with a two-stage pH control strategy. Fuel 203:469–477. https://doi.org/10.1016/j.fuel.2017.04.138

    Article  CAS  Google Scholar 

  12. Guragain YN, Vadlani PV (2017) 2,3-Butanediol production using Klebsiella oxytoca ATCC 8724: evaluation of biomass derived sugars and fed-batch fermentation process. Process Biochem 58:25–34. https://doi.org/10.1016/j.procbio.2017.05.001

    Article  CAS  Google Scholar 

  13. Hazeena SH, Pandey A, Binod P (2017) Evaluation of oil palm front hydrolysate as novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renew Energy 98:216–220. https://doi.org/10.1016/j.renene.2016.02.030

    Article  CAS  Google Scholar 

  14. Huang C, Jiang Y, Guo G, Hwang W (2013) Method of 2,3-butanediol production from glycerol and acid-pretreated rice straw hydrolysate by newly isolated strains: pre-evaluation as an integrated biorefinery process. Bioresour Technol 135:446–453. https://doi.org/10.1016/j.biortech.2012.10.141

    Article  CAS  PubMed  Google Scholar 

  15. Ji X, Huang H, Ouyang P (2011) Microbial 2,3-butanediol production: a state of the art—review. Biotechnol Adv 29:351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  16. Joo J, Lee SJ, Yoo HY, Kim Y, Jang M, Lee J, Han SO, Kim SW, Park C (2016) Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects on inhibitory compounds by Enterobacter aerogenes. Chem Eng J 306:916–924. https://doi.org/10.1016/j.cej.2016.07.113

    Article  CAS  Google Scholar 

  17. Jung MY, Park BS, Lee J (2013) Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 139:21–27. https://doi.org/10.1016/j.biortech.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Jung MY, Jung HM, Lee J (2015) Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnol Biofuels 8(1):106. https://doi.org/10.1186/s13068-015-0290-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jurchescu I, Hamann J, Zhou X, Ortmann T, Kuenz A, Pruesse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 878. Appl Microbiol Biotechnol 97:6715–6723. https://doi.org/10.1007/s00253-013-4981-z

    Article  CAS  PubMed  Google Scholar 

  20. Kim D, Park JM, Song H, Chang YK (2016) Kinetic modelling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochem Eng J 114:94–100. https://doi.org/10.1002/btpr.2168

    Article  CAS  Google Scholar 

  21. Kim T, Cho S, Woo HM, Lee S, Lee J, Um Y, Seo J (2017) High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6. Appl Microbiol Biotechnol 101:2821–2830. https://doi.org/10.1007/s00253-017-8094-y

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Dai JY, Xiu ZL (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour Technol 101(21):8342–8347. https://doi.org/10.1016/j.biortech.2010.06.041

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Gomez M, Flores N, Castañeda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Grosset G, Encarnacion S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46. https://doi.org/10.1186/1475-2859-11-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Metsoviti M, Paramithiotis S, Drosino EH, Galiotou-Panayotou M, Nychas GE, Zeng A, Papanikolau S (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12(1):57–68. https://doi.org/10.1002/elsc.201100058

    Article  CAS  Google Scholar 

  25. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value added products. Angew Chem Int Ed 46:4434–4440. https://doi.org/10.1002/anie.200604694

    Article  CAS  Google Scholar 

  26. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:5–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  Google Scholar 

  27. Park JM, Oh BR, Kang IY (2017) Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp strain BRC1 with increased inulinase activity. J Ind Microbiol Biotechnol 44(7):1107–1113. https://doi.org/10.1007/s10295-017-1932-1

    Article  CAS  PubMed  Google Scholar 

  28. Petrov P, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665. https://doi.org/10.1007/s00253-009-2004-x

    Article  CAS  PubMed  Google Scholar 

  29. Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87:943–949. https://doi.org/10.1007/s00253-010-2545-z

    Article  CAS  PubMed  Google Scholar 

  30. Priya A, Lal B (2019) Efficient valorization of waste glycerol to 2,3-butanediol using Enterobacter cloacae TERI BD 18 as a biocatalyst. Fuel 250:292–305. https://doi.org/10.1016/j.fuel.2019.03.146

    Article  CAS  Google Scholar 

  31. Ripoll V, Vicente G, Moran B, Rojas A, Segarra S, Montesinos A, Tortajada M, Ramon D, Ladero M, Santos VE (2016) Novel biocatalyst for glycerol conversion into 2,3-butanediol. Process Biochem. 51:740–748. https://doi.org/10.1016/j.procbio.2016.03.006

    Article  CAS  Google Scholar 

  32. Rodriguez A, Ripoll V, Santos VE, Gomez E, Garcia-Ochoa F (2017) Effect of fluid dynamic conditions on 2,3-butanediol production by Raoultella terrigena in SBTR: oxygen transfer and uptake rates. J Chem Technol Biotechnol 92:1266–1275. https://doi.org/10.1002/jctb.5120

    Article  CAS  Google Scholar 

  33. Santibañez C, Varnero MT, Bustamante M (2011) Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chil J Agric Res 71(3):469–475. https://doi.org/10.4067/S0718-58392011000300019

    Article  Google Scholar 

  34. Villet R (1981) Biotechnology for producing chemicals from biomass. Fermentation chemicals from biomass, vol 2, Department of Energy, Solar Energy Research Institute, Golden, Colorado

  35. Wilke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142. https://doi.org/10.1007/s00253-004-1733-0

    Article  CAS  Google Scholar 

  36. Yang S, Mohagheghi A, Franden MA, Chou Y, Chen X, Dowe N, Himmel ME, Zhang M (2016) Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels 9:189–204. https://doi.org/10.1186/s13068-016-0606-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang T, Rao Z, Zhang X, Xu M, Yang S (2013) Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of cosubstrates on 2,3-butanediol production. Appl Microbiol Biotechnol 97:7651–7658. https://doi.org/10.1007/s00253-013-5048-x

    Article  CAS  PubMed  Google Scholar 

  38. Yang T, Rao Z, Zhang X, Xu Z, Yang S (2015) Enhanced 2,3-butanediol production from biodiesel-derived by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact 14:122–133. https://doi.org/10.1186/s12934-015-0317-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yen H, Li F, Chang J (2014) The effects of dissolved oxygen level on the distribution of 1,3 propanediol and 2,3 butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresour Technol 153:374–378. https://doi.org/10.1016/j.biortech.2013.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía, Industria y Competitividad -MINECO-, Gobierno de España, under contract EUI2008-03600 and CTQ2010-11765-E.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Rodríguez or Victoria E. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripoll, V., Rodríguez, A., Ladero, M. et al. High 2,3-butanediol production from glycerol by Raoultella terrigena CECT 4519. Bioprocess Biosyst Eng 43, 685–692 (2020). https://doi.org/10.1007/s00449-019-02266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02266-8

Keywords

Navigation