Skip to main content
Log in

Hammerstein model for hysteresis characteristics of pneumatic muscle actuators

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a kind of novel compliant actuators, pneumatic muscle actuators (PMAs) have been recently used in wearable devices for rehabilitation, industrial manufacturing and other fields due to their excellent actuation characteristics such as high power/weight ratio, safety and inherent compliance. However, the strong nonlinearity and asymmetrical hysteresis cause difficulties in the accurate control of robots actuated by PMAs. In this paper, a method for hysteresis modeling of PMA based on Hammerstein model is proposed, which introduces the BP neural network into the hysteretic system. In order to overcome the limitation of BP neural network’s single-valued mapping, an extended space input method is adapted while the Modified Prandtl–Ishlinskii model is applied to characterize the hysteretic phenomenon. A conventional PID control is implemented to track the trajectory of PMA with and without the feed-forward hysteresis compensation based on Hammerstein model, and experimental results validate the effectiveness of the designed model which has the advantages of high precision and easy identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aschemann, H., Schindele, D.: Comparison of model-based approaches to the compensation of hysteresis in the force characteristic of pneumatic muscles. IEEE Trans. Ind. Electron. 61(7), 3620–3629 (2014)

    Article  Google Scholar 

  • Gu, G.Y., Zhu, L.M., Su, C.Y.: Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Trans. Ind. Electron. 61(3), 1583–1595 (2013)

    Article  Google Scholar 

  • Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc-Wen model, a survey. Arch. Comput. Methods Eng. 16(2), 161–188 (2009)

    Article  MATH  Google Scholar 

  • Janaideh, M.A., Rakheja, S., Su, C.Y.: A generalized Prandtl-Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Mater. Struct. 18(4), 045001 (2009)

    Article  Google Scholar 

  • Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur. J. Control 9(4), 407–418 (2003)

    Article  MATH  Google Scholar 

  • Li, Z., Su, C.Y., Chai, T.: Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model. IEEE Trans. Autom. Sci. Eng. 11(2), 613–619 (2014)

    Article  Google Scholar 

  • Li, M., Wu, H., Wang, Y., et al.: Modified Levenberg-Marquardt algorithm for BP neural network training in dynamic model identification of mechanical systems. J. Dyn. Syst. Meas. Control 139(3), 031012 (2017)

    Article  Google Scholar 

  • Lin, C.J., Lin, P.T.: Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Comput. Math. Appl. 64(5), 766–787 (2012)

    Article  Google Scholar 

  • Lin, C.J., Lin, C.R., Yu, S.K., et al.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model. Mechatronics 28, 35–45 (2015)

    Article  Google Scholar 

  • Mei, J.P., Xie, S.L., Liu, H.T., et al.: Hysteresis modelling and compensation of pneumatic artificial muscles using the generalized Prandtl-Ishlinskii model. J. Mech. Eng. 63(11), 657–665 (2017)

    Article  Google Scholar 

  • Meng, W., Liu, Q., Zhou, Z., et al.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015)

    Article  Google Scholar 

  • Ompusunggu, A.P.Y., Sas, P., Van Brussel, H.: Modeling and simulation of the engagement dynamics of a wet friction clutch system subjected to degradation: An application to condition monitoring and prognostics. Mechatronics 23(6), 700–712 (2013)

    Article  Google Scholar 

  • Prakash, M., Shome, S.K., Pradhan, S., et al.: A comparison of dithers for hysteresis alleviation in DAHL model based piezoelectric actuator. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE). IEEE (2014)

  • Ruderman, Michael: Presliding hysteresis damping of LuGre and Maxwell-slip friction models. Mechatronics 30, S0957415815001221 (2015)

    Article  Google Scholar 

  • Sarosi, J.: New approximation algorithm for the force of fluidic muscles. In: IEEE International Symposium on Applied Computational Intelligence and Informatics. IEEE, pp. 229–233 (2012)

  • Sengupta, P., Li, B.: Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement. Eng. Struct. 46(46), 392–406 (2013)

    Article  Google Scholar 

  • Takashima, K.T., Rossiter, J., Mukai, T.: McKibben artificial muscle using shape-memory polymer. Sens. Actuators A Phys. 164(1–2), 116–124 (2010)

    Article  Google Scholar 

  • Vo-Minh, T., Tjahjowidodo, T., Ramon, H., et al.: A new approach to modeling hysteresis in a pneumatic artificial muscle using the maxwell-slip model. IEEE/ASME Trans. Mechatron. 16(1), 177–186 (2011)

    Article  Google Scholar 

  • Xiao, S.L., Li, Y.M.: Optimal design, fabrication and control of an xy micro-positioning stage driven by electromagnetic actuators. IEEE Trans. Ind. Electron. 60(10), 4613–4626 (2013a)

    Article  Google Scholar 

  • Xiao, S., Li, Y.: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model. IEEE Trans. Control Syst. Technol. 21(5), 1549–1557 (2013b)

    Article  Google Scholar 

  • Xie, S.L., Liu, H.T., Mei, J.P., et al.: Modeling and compensation of asymmetric hysteresis for pneumatic artificial muscles with a modified generalized Prandtl-Ishlinskii model. Mechatronics 52, 49–57 (2018)

    Article  Google Scholar 

  • Xie, S., Mei, J., Liu, H., et al.: Motion control of pneumatic muscle actuator using fast switching valve//mechanism and machine science. Springer, Singapore (2017)

    Google Scholar 

  • Zhang, J., Chin, K.S., Ławryńczuk, M.: Nonlinear model predictive control based on piecewise linear Hammerstein models. Nonlinear Dyn. 92, 1–21 (2018)

    Article  MATH  Google Scholar 

  • Zhang, B., Gupta, B., Ducharne, B., et al.: Preisach’s model extended with dynamic fractional derivation contribution. IEEE Trans. Magn. 54, 1–4 (2017)

    Google Scholar 

  • Zhou, M., He, S., Hu, B., et al.: Modified KP model for hysteresis of magnetic shape memory alloy actuator. IETE Tech. Rev. 32(1), 29–36 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants 51705381 and 51675389 and Nature Science Foundation of Hubei Province (2017CFB428) and Overseas S&T Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Q., Peng, Y., Zuo, J. et al. Hammerstein model for hysteresis characteristics of pneumatic muscle actuators. Int J Intell Robot Appl 3, 33–44 (2019). https://doi.org/10.1007/s41315-019-00084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-019-00084-5

Keywords

Navigation