Skip to main content

Advertisement

Log in

Biology of Amaranths

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Amaranthus, a cosmopolitan genus including endangered species, restricted endemics and widespread weeds, is often difficult to characterize taxonomically and thus has generally been considered by systematists as a “difficult” genus. Species in this genus have high genetic variability, with diversity in growth form, plant height, number of inflorescences, seed colour, protein content, seed yield, resistance to pests and diseases, and adaptation to soil type, pH, climate, rainfall and day-length. The combination of various anatomical characteristics of Amaranthus, such as Kranz anatomy, well developed root system, stomatal conductance, and maintenance of leaf area, results in increased efficiency of using CO2 under a wide range of temperatures, and higher light intensity and moisture stress environments which enables this plant to adapt under diverse geographic and environmental conditions. Buried seeds of Amaranthus constitute an important part of the soil seed bank and position, distribution and dormancy type of these seeds in the soil play an important role in their germination and subsequent emergence, which is further influenced by factors like temperature, soil moisture, and light availability. The current review highlights the positive as well as negative role of the various species of genus Amaranthus. Many species of the genus are medicinally important and bear antiallergic, anticancer, antihypertensive and antioxidant properties, thus being used in the treatment of several aliments. Amaranthus being a rich source of fatty acids, proteins, micronutrients, vitamins and squalene, are used as cereals, dye plants, forages, medicinal plants, ornamentals, and as vegetables. However some of the Amaranthus species are noxious weeds which are known to compete with many economic crops in different parts of the world and cause great yield losses. Thus, further research is warranted to strike a balance between the beneficial and harmful species of this Pseudocereal. Moreover, understanding the weedy behaviour of these plants would provide valuable information for improving our mechanistic models of crop-weed competition and weed population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adefemi, O. S., O. A. Ibigbami & E. E. Awokunmi. 2012. Level of heavy metals in some edible plants collected from selected dumpsites in Ekiti State, Nigeria. Global Advanced Research Journal of Environmental Science and Toxicology 1: 132–136.

    Google Scholar 

  • Adefila, E. O., C. T. Onwordi & I. A. Ogunwande. 2010. Level of heavy metals uptake on vegetables planted on poultry droppings dumpsite. Archives of Applied Science Research 2: 347–353.

    CAS  Google Scholar 

  • Adekunle, I. M., O. Olorundare & C. Nwange. 2009. Assessments of lead levels and daily intakes from green leafy vegetables of southwest Nigeria. Nutrition and Food Science 39: 413–422.

    Article  Google Scholar 

  • Adewuyi, G. O., F. A. Dawodu & N. N. Jibiri. 2010. Studies of the concentration levels of heavy metals in vegetable (Amaranthus caudatus) grown in dumpsites within Lagos Metropolis, Nigeria. Pacific Journal of Science and Technology 11: 616–620.

    Google Scholar 

  • Aguyoh, J. N. & J. B. Masiunas. 2003. Interference of redroot pigweed (Amaranthus retroflexus) with snap beans. Weed Science 51: 202–207.

    Article  CAS  Google Scholar 

  • Akubugwo, E. I., A. Obasi, G. C. Chinyere, E. Eze, O. Nwokeoji & E. A. Ugbogu. 2012. Phytoaccumulaion effects of Amaranthus hybridus L. grown on buwaya refuse dumpsites in Chikun, Nigeria on heavy metals. Journal of Biodiversity and Environmental Sciences 2: 10–17.

    Google Scholar 

  • Alam, S. M., S. A. Ala, A. R. Azmi, M. A. Khan & R. Ansari. 2001. Allelopathy and it’s role in agriculture. Journal of Biological Sciences 1: 308–315.

    Article  Google Scholar 

  • Al-Khatib, K. 1995. Weed control in wheat. Washington State University Cooperative Extension. pp. 244–364.

  • Alm, D. M., M. E. Mcgiffen & J. D. Hesketh. 1991. Weed phenology. In: Hodges T, ed Predicts crop phonology. Boca Raton: CRC Press 191–218.

    Google Scholar 

  • ———, S. M. Khan, S. M. Mujtaba & A. Shereen. 2002. Influence of aqueous leaf extract of common lambsquarters and NaCl salinity on the germination, growth, and nutrient contents of wheat. Acta Physiologiae Plantarum 24: 359–364.

  • Altieri, M. A. & J. D. Doll. 1978. The potential of allelopathy as a tool for weed management in crop fields. PANS 24: 495–502.

    Google Scholar 

  • Al-Turki, T. A., S. A. Filfilan & S. F. Mehmood. 2000. A cytological study of flowering plants from Saudi Arabia. Willdenowia 30: 339–358.

    Article  Google Scholar 

  • Amini, R., S. Ghanepour & F. Movahedpour. 2013. Morpho-physiological and phenological changes induced by smooth amaranth allelopathic effects in various types of dry bean. International Journal of Agriculture and Crop Sciences 5: 120–124.

    Google Scholar 

  • Anaya, L., L. Ramos, R. H. Cruz, J. G. Fernandez & V. Nava. 1987. Perspectives on allelopathy in mexican traditional agroecosystems: A case study in Taxcala. Journal of Chemical Ecology 13: 2083–2101.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. L. & D. C. Nielsen. 1996. Emergence pattern of five weeds in the central great plains. Weed Technology 10: 744–749.

    Google Scholar 

  • Anderson, D. D., F. W. Roeth & A. R. Martin. 1996. Occurrence and control of triazineresistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technology 10: 570–575.

    CAS  Google Scholar 

  • Atayese, M. O., A. I. Eigbadon, K. A. Oluwa & J. K. Adesodunl. 2009. Heavy metal contamination of Amaranthus grown along major highways in Lagos, Nigeria. African Crop Science Journal 16: 225–235.

    Google Scholar 

  • Balsbaugh, E. U., R. D. Frye Jr., C. G. Scholl & A. W. Anderson. 1981. Insects for weed control: status in North Dakota. North Dakota Farm Research 39: 3–7.

    Google Scholar 

  • Baquar, S. R. & O. O. Olusi. 1988. Cytomorphological and phylogenetic studies of the genus Amaranthus from Nigeria. Kromosomo 51: 1665–1674.

    Google Scholar 

  • Barralis, G. & J. Gasquez. 1987. Investigations on herbicide resistant weeds. Newsletter of the European Weed Research Society 38: 5–10.

    Google Scholar 

  • Baskin, I. J. & C. C. Baskin. 1977. Role of temperature in the germination ecology of three summer annual weeds. Oecologia 30: 377–382.

    Article  PubMed  Google Scholar 

  • Baskin, J. M. & C. C. Baskin. 1985a. Seasonal changes in the germination responses of buried Witchgrass (Panicum capillare) seeds. Weed Science 34: 22–24.

    Google Scholar 

  • ——— & ———. 1985b. The annual dormancy cycle in buried weed seeds: A continuum. BioScience 35: 492–498.

    Article  Google Scholar 

  • ——— & ———. 1987. Temperature requirements for after-ripening in buried seeds of four summer annual weeds. Weed Research 27: 385–389.

    Article  Google Scholar 

  • ——— & ———. 1990. The role of light and alternating temperatures on germination of Polygonum aviculare seeds exhumed on various dates. Weed Research 30: 397–402.

    Article  Google Scholar 

  • ——— & ———. 1998. Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press pp. 27–200.

    Book  Google Scholar 

  • Batlla, D., B. C. Kruk & R. L. Benech-Arnold. 2000. Very early detection of canopy presence by seeds through perception of subtle modifications in R: FR signals. Functional Ecology 14: 195–202.

    Article  Google Scholar 

  • Becker, R., E. L. Wheeler, K. Lorenz, A. E. Stafford, O. K. Grosjean, A. A. Betschart & R. M. Saunders. 1981. A composition study of amaranth grain. Journal of Food Science 46: 1175–1180.

    Article  CAS  Google Scholar 

  • Behera, B. & S. N. Patnaik. 1974. Cytotaxonomic studies in the family amaranthaceae. Cytologia 39: 121–131.

    Article  Google Scholar 

  • ——— & ———.1977. Genome analysis of Amaranthus dubius Mart. ex Thell. through the study of A. spinosus × A. dubius hybrids. Proceedings of Indian Science Congress Association 64: 144.

  • ——— & ———. 1982. Genome analysis of Amaranthus dubius Mart. ex Thell. through the study of Amaranthus spinosus × A. dubius hybrids. Cytologia 47: 379–389.

    Article  Google Scholar 

  • Bell, M. S., A. G. Hager & P. J. Tranel. 2013. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Science 61: 460–468.

    Article  CAS  Google Scholar 

  • Benech-Arnold, R. L., C. M. Ghersa, R. A. Sanchez & P. Insausti. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Research 30: 81–89.

    Article  Google Scholar 

  • ———, R. A. Sánchez, F. Forcella, B. C. Kruk & C. M. Ghersa. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67: 105–122.

  • Bensch, C. N., M. J. Horak & D. Peterson. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science 51: 37–43.

    Article  CAS  Google Scholar 

  • Benvenuti, S. 2003. Soil texture involvement in germination and emergence of buried weed seeds. Agronomy Journal 95:191–198.

    Article  Google Scholar 

  • ——— & M. Macchia. 1997. Germination ecophysiology of bur beggerticks (Bidens tripartite) as affected by light and oxygen. Weed Science 45: 696–700.

  • ——— & ———. 1998. Phytochrome-mediated germination control of Datura stramonium L. seeds after seed burial. Weed Research 38: 199–206.

  • ———, M. Macchia & S. Miele. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science 49: 528–535.

  • Bewley, J. D. & M. Black. 1994. Seeds: physiology of development and germination. Plenum, Berlin.

    Book  Google Scholar 

  • Bhowmik P. C. 1997. Weed biology: importance to weed management. Weed Science 45: 349–356.

    CAS  Google Scholar 

  • ——— & J. D. Doll. 1980. Field studies on allelopathic effects of weeds and crop residues. In Proceedings North Central weed Control Conference 35: 82–83.

  • ——— & ———. 1982. Corn and soybean response to allelopathic effects of weed and crop residues. Agronomy Journal 74: 601–606.

    Article  Google Scholar 

  • ——— & ———. 1983. Growth analysis of corn and sorghum response to allelopathic effects of weed residues at various temperatures and photosynthetic photon flux densities. Journal of Chemical Ecology 9: 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  • ——— & ———. 1984. Allelopathic effect of annual weed residues on growth and nutrient uptake of corn and soybean. Agronomy Journal 76: 383–388.

    Article  Google Scholar 

  • Bibbey, R. O. 1935. The influence of environment upon the germination of weed seeds. Scientia Agricola 16: 141–150.

    Google Scholar 

  • Bigaliev, A., K. Boguspaev & E. Znanburshin. 2003. Phytoremediation potential of Amaranthus sp. for heavy metals contaminated soil of oil producing territory. 10th Annual International Petroleum Environmental Conference. Houston, al-Farabi Kazakh.

  • Bonasora, M. G., L. Poggio & E. J. Greizerstein. 2013. Cytogenetic studies in four cultivated Amaranthus (Amaranthaceae) species. Comparative cytogenetics 7: 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond, J. A., L. R. Oliver & D. O. Stephenson. 2006. Response of palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technology 20: 885–892.

    Article  CAS  Google Scholar 

  • Bouwmeester, H. J. & C. M. Karssen. 1992. The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90: 88–94.

    Article  PubMed  Google Scholar 

  • Boyd, J. 2008. Pasture weed and brush control. University of Arkansas.

  • Bradow, J. M. & W. J. Connick. 1987. Allelochemicals of palmer amaranth (Amaranthus palmeri S. Wats.). Journal of Chemical Ecology 13: 185–202.

    Article  CAS  PubMed  Google Scholar 

  • ——— & ———. 1988. Seed germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. Journal of Chemical Ecology 14: 1633–1648.

    Article  CAS  PubMed  Google Scholar 

  • Brainard, D. C., R. R. Bellinder & A. DiTommaso. 2005. Effects of canopy shade on the morphology, phenology, and seed characteristics of Powell amaranth (Amaranthus powelli). Weed Science 53: 175–186.

    Article  CAS  Google Scholar 

  • Breene, W. M. 1991. Food uses of grain amaranth. Cereal Foods World 36: 426–430.

    CAS  Google Scholar 

  • Brenner, D. M., D. D. Baltensperger, P. A. Kulakow, J. W. Lehmann, R. L. Myers, M. M. Slabbert & B. B. Sleugh. 2000. Genetic resources and breeding of Amaranthus. Plant Breeding Reviews 19: 227–285.

    CAS  Google Scholar 

  • Buchanan, G. A., R. H. Crowley, J. E. Street & J. A. McGuire. 1980. Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirsutum). Weed Science 28: 258–262.

    Google Scholar 

  • Budin, J. T., W. M. Breen & D. H. Patnum. 1996. Some compositional properties of seeds and oils of eight Amaranthus species. Journal of the American Oil Chemists’ Society 73: 475–481.

    Article  CAS  Google Scholar 

  • Buhler, D. D. 1992. Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage. Weed Science 40: 241–248.

    CAS  Google Scholar 

  • ———, T. C. Mester & K. A. Kohler. 1996. The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amaranthus retroflexus, and Chenopodium album. Weed Research 36: 153–165.

  • ———, R. G. Hartzler & F. Forcella. 1997. Implications of weed seedbank dynamics to weed management. Weed Science 45: 329–336.

  • ———, K. A. Kohler & R. L. Thompson. 2001. Weed seed bank dynamics during five-year crop rotation. Weed Technology 15: 170–176.

  • Burch, P., R. Masters, E. S. Hagood, K. Bradley, W. W. Witt, K. Moore & J. Breuninger. 2005. Aminopyralid: A new herbicide for integrated renovation programs.

  • Burke, I. C., M. Schroeder, W. E. Thomas & J. W. Wilcut. 2007. Palmer amaranth interference and seed production in peanut. Weed Technology 21: 367–371.

    Article  Google Scholar 

  • Bürki, H. M., D. Schroeder, J. Lawrie, L. Cagan, M. Vrablova, M. E. Aydam, F. Szentkiralyi, R. Ghorbani, B. Jüttersonke & H. U. Ammon. 1997. Biological control of pigweeds (Amaranthus retroflexus L., A. Powellii S. Watson and A. bouchonii Thell.) with phytophagous insects, fungal pathogens and crop management. Integrated Pest Management Reviews 2: 51–59.

    Article  Google Scholar 

  • Burnside, O. C., C. R. Fernster, L. L. Evertts & R. F. Mumm. 1981. Germination of exhumed weed seed in Nebraska. Weed Science 29: 577–586.

    Google Scholar 

  • ———, R. G. Wilson, S. Weisberg & K. G. Hubbard. 1996. Seed longetivity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Science 44: 74–86.

  • Cadman, C. S. C., P. E. Toorop, H. W. M. Hilhorst & W. E. Finch-Savage. 2006. Gene expression profiles of Arabidopsis cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. The Plant Journal 46: 805–822.

    Article  CAS  PubMed  Google Scholar 

  • Cagán, L., M. Vráblová & P. Tóth. 2000. Flea beetles (Chrysomelidae: Alticinae) species occurring on Amaranthus spp. in slovakia. Journal of Central European Agriculture 1: 14–25.

    Google Scholar 

  • Cardina, J., E. Regnier & K. Harrison. 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Science 39: 186–194.

    Google Scholar 

  • ———, T. M. Webster, C. P. Herms & E. E. Regnier. 1999. Development of weed IPM: Levels of integration for weed management. Journal of crop production 2: 239–267.

  • ———, C. P. Herms & D. J. Doohan. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Science 50: 448–460.

  • Castelano-Sousa, V. M. & J. Amaya-Farfán. 2012. State of knowledge on amaranth grain: a comprehensive review. Journal of Food Science 77: 93–104.

    Article  CAS  Google Scholar 

  • Castor, R. D., A. A. M. Lammeren, S. P. C. Groot, G. Bino & W. M. Hilhorest. 2000. Cell division and subsequent radical protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of micro tubular cytoskeleton are not. Plant Physiology 122: 327–335.

    Article  Google Scholar 

  • Chakravorty, A. & P. D. Ghosh. 2012. Phenology of some broad leaved kharif weeds of alluvium zone of West Bengal. International Journal of Scientific and Research Publications 2.

  • Chaniago, I., A. Taji & R. Jessop. 2006. Weed interference in soybean (Glycine max). The Australian Society of Agronomy. Proceedings of the Australian Agronomy Conference.

  • Charudattan, R. 1994. Status report of the University of Florida, Plant Pathology Department, Gainesville, FL, USA. International Bioherbicide Group IBG News 3: 8–9.

  • Chauhan, B. S. & D. E. Johnson. 2009. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Science 57: 379–385.

    Article  CAS  Google Scholar 

  • Chepil, W. S. 1946. Germination of weed seeds: I. Longevity, periodicity of germination, and vitality of seeds in cultivated soil. Scientific Agriculture 26: 307–346.

    Google Scholar 

  • Chikkalingaiah, G. E. & M. Mahadevappa. 1998. Effect of different plant species and plant leachates on Parthenium hysterophorus L. weed. Crop Research 15: 106–164.

    Google Scholar 

  • Chinmayee, M. D., B. Mahesh, S. Pradesh, I. Mini & T. S. Swapna. 2012. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Applied Biochemistry and Biotechnology 167: 1550–1559.

    Article  CAS  PubMed  Google Scholar 

  • Clements, D. R., D. L. Benoit, S. D. Murphy & C. J. Swanton. 1996. Tillage effects of weed seed return and seedbank composition. Weed Science 44: 314–322.

    CAS  Google Scholar 

  • Conforti, F., G. Statti, M. R. Loizzo, G. Sacchetti, F. Poli & F. Menichini. 2005. In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin 28: 1098–1102.

    Article  CAS  PubMed  Google Scholar 

  • Connick, W. J., J. M. Bradow, M. G. Legendre, S. L. Vail & R. M. Menges. 1987. Identification of volatile allelochemicals from Amaranthus palmeri S. Wats. Journal of Chemical Ecology 13: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Costea, M. & D. DeMason. 2001. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) - Taxonomic significance. Journal of the Torrey Botanical Society 128: 254–281.

    Article  Google Scholar 

  • ——— & F. J. Tardif. 2003. The biology of Canadian weeds. 126. Amaranthus albus L., A. blitoides S. Watson and A. blitum L. Canadian Journal of Plant Science 83: 1039–1066.

  • ———, A. Sanders & G. Waines. 2001. Preliminary results toward a revision of the Amaranthus hybridus complex (Amaranthaceae). SIDA 19: 931–974.

  • ———, S. E. Weaver & F. J. Tardif. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science 84: 631–668.

  • Covas, G. & J. H. Hunziker. 1954. Estudics cariológicos en. Antófitas. Revista Invest Agriculture 8: 249–253.

    Google Scholar 

  • ——— & B. Schnack. 1946. Número de cromosomas en antófitas de la región de Cuyo (República Argentina). Revista Argent. Agron 13: 153–166.

  • Cowan, P., S. E. Weaver & C. J. Swanton. 1998. Interference between pigweed (Amaranthus spp.), barnyardgrass (Echinochloa crus-galli), and soybean (Glycine max). Weed Science 46: 533–539.

    CAS  Google Scholar 

  • Cristaudo, A., F. Gresta, F. Luciani & A. Restuccia. 2007. Effects of after-harvest period and environmental factors on seed dormancy of Amaranthus species. Weed Research 47: 327–334.

    Article  Google Scholar 

  • Culpepper, A. S. & J. M. Kichler. 2009. University of Georgia herbicide programs for controlling glyphosate-resistant palmer amaranth in 2009 cotton. University of Georgia Collge of Agricultural and Environmental Sciences, Circular, 924 pp. 2.

    Google Scholar 

  • Culpepper, A. S., T. L. Grey, W. K. Vencill, J. M. Kichler, T. M. Webster, S. M. Brown & A. C. York. 2006. Glyphosate-resistant palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Science 54: 620–626.

    Article  CAS  Google Scholar 

  • ———, J. R. Whitaker, A. W. MacRae & A. C. York. 2008. Weed science: distribution of glyphosate-resistant palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. Journal of Cotton Science 12: 306–310.

  • Das, S. 2016. Amaranths: The Crop of Great Prospect. In Amaranthus: A Promising Crop of Future (pp. 13–48). Springer Singapore.

  • Datta, S. C. & A. K. Bandyopadhayay. 1981. Allelopathic influences of three weeds on two crops. In: I Asian Pacific Weed Science Society Conference. APWSS: Tokyo. pp. 391–399.

  • Der Marderosian, A. D., J. Beutler, W. Pfendner, J. Chambers, R. Yoder, E. Weinsteiger & J. Senft. 1980. Nitrate and oxalate content of vegetable amaranth. In Proceedings of the Second Amaranth Conference pp. 31. Rodale Press, Emmaus, PA.

  • Dieleman, A., A. S. Hamill, S. F. Weise & C. J. Swanton. 1995. Empirical models of pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed Science 3: 612–618.

    Google Scholar 

  • ———, ———, G. C. Fox & C. J. Swanton. 1996. Decision rules for post emergence control of pigweed (Amaranthus spp.) in soybean (Glycine max). Weed Science 44: 126–132.

    CAS  Google Scholar 

  • ———, D. A. Mortensen, D. D. Buhler & R. B. Ferguson. 2000. Identifying associations among site properties and weed species abundance. II. Hypothesis generation. Weed Science 48: 576–587.

  • Dillon, T. L., E. L. Baldwin & C. M. Becton. 1989. Palmer amaranth control in sandy soil in northeast Arkansas. Proceedings of the Southern Weed Science Society 42: 113.

    Google Scholar 

  • Dorling, K. 2008. RHS AZ Encyclopedia of garden plants. United Kingdom 1136.

  • Doroszeweski, A. 2001. Natural for red irradiation and wed seed persistence in the soil. In: Ellis, R.H. and Black, M. (eds), Basic and applied aspects of seed biology. Kluwer Academic Publishers. pp. 297–302.

    Google Scholar 

  • Dos Santos, C. C., D. F. De Oliviera, L. W. R. Alves & D. A. S. De Furtado. 2004. Effect of organic extracts associated with surfactant Tween 80 on seed germination and seedling growth of lettuce. Ciência e Agrotecnologia 28: 296–299.

    Article  Google Scholar 

  • Dowler, C. C. 1995. Weed survey-southern states: broadleaf crops sub-section. Southern Weed Science Society 48: 298–302.

    Google Scholar 

  • Downtown, W. J. S. 1973. Amaranthus edulis: a high lysine grain amaranth. World Crops 25: 20–21.

    Google Scholar 

  • Drew, M. C. 1990. Sensing soil oxygen. Plant Cell Environment 13: 681–693.

    Article  CAS  Google Scholar 

  • DuPont Crop Protection. 2009. DPX-MAT 28 Herbicide Technical Bulletin.

  • Early, D. K. 1977. Cultivation and uses of amaranth in contemporary Mexico. In: Proceedings of the First Amaranth Seminar: 39. Rodale Press: 39–60.

  • Early, D. 1992. The renaissance of amaranth. pp. 15–33. In N. Foster and L. S. Cordell (eds.). Chiles to chocolates: Foods the Americas gave the world. University of Arizona Press, Tucson.

    Google Scholar 

  • Egley, G. H. 1989. Some effects of nitrate-treated soil upon the sensitivity of buried redroot pigweed (A. retroflexus L.) seeds to ethylene, temperature, light and carbon dioxide. Plant Cell and Environment 12: 581–588.

    Article  Google Scholar 

  • Eliasson, U. H. 1988. Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. Botanical Journal of the Linnaean Society 96: 235–283.

    Article  Google Scholar 

  • Elmore, C. L. 1996. A reintroduction to integrated weed management. Weed Science 44: 409–412.

    CAS  Google Scholar 

  • EPA (Environmental Protection Agency). 2007. Research addresses potential risks of atrazine and related pesticides. Office of Research and Development.

    Google Scholar 

  • Espitia-Rangel, E. 1994. Breeding of grain amaranth. Amaranth: biology, chemistry, and technology. CRC press, Boca Raton, USA 23–38.

  • Evans, C. R. 1922. Effect of temperature on germination of Amaranthus retroflexus. Botanical Gazette 73: 213–225.

    Article  CAS  Google Scholar 

  • Faccini, D. & J. I. Vitta. 2005. Germination characteristics of A. quitensis as affected by seed production date and duration of burial. Weed Research 45: 371–378.

    Article  Google Scholar 

  • Falk, J. S., D. E. Shoup, K. Al-Khatib & D. E. Peterson. 2005. Survey of common waterhemp (Amaranthus rudis) response to protox- and ALS-inhibiting herbicides in northeast Kansas. Weed Technology 19: 838–846.

    Article  CAS  Google Scholar 

  • FAO. 1973. Energy and protein requirements. In: FAO Nutrition Meetings Report Series (No. 52).

    Google Scholar 

  • Farvin, K. S., R. Anandan, S. H. S. Kumar, K. S. Shiny, S. Mathew, T. V. Sankar & P. V. Nair. 2006. Cardio protective effect of squalene on lipid profile in isoprenaline-induced myocardial infarction in rats. Journal of Medicinal Food 9: 531–536.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, T. & G. Bean. 1984. Fatty acids and sterols of Amaranthus tricolor L. Food Chemistry 15: 233–237.

    Article  CAS  Google Scholar 

  • Ferrell, J. & B. Sellers. 2007. Spiny amaranth (spiny pigweed) control in pastures. University of Florida.

  • Fischer, N. H. & L. Quijano. 1985. Allelopathic agents from common weeds: Amarantbus palmeri, Ambrosia artemisiifolia, and related weeds. In ACS Symposium series American Chemical Society.

  • Flint, E. P. & D. T. Patterson. 1983. Interference and temperature effects on growth in soybean and associated C3 and C4 weeds. Weed Science 31: 191–195.

    Google Scholar 

  • Foes, M. J., P. J. Tranel, L. M. Wax & E. W. Stoller. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Science 46: 514–520.

    CAS  Google Scholar 

  • Forcella, F., R. G. Wilson & J. Dekker. 1997. Weed seed bank emergence across the corn belt. Weed Science 45:67–76.

    CAS  Google Scholar 

  • Fortin, M. C. & F. J. Pierce. 1990. Development and growth effects of crop residues on corn. Agronomy Journal 82: 710–715.

    Article  Google Scholar 

  • Franssen, A. S., D. Z. Skinner, K. Al-Khatib & M. J. Horak. 2001a. Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Science 49:732–737.

    Article  CAS  Google Scholar 

  • ———, ———, ———, ——— & P. A. Kulakow. 2001b. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Science 49: 598–606.

    Article  CAS  Google Scholar 

  • Fritz, T. J. & N. L. Hartwig. 1986. Spiny amaranth control in pastures. Proceedings of the Northeastern Weed Science Society 40: 20–23.

    CAS  Google Scholar 

  • Fuerst, E. P., M. Barrett & D. Penner. 1986. Control of triazine-resistant common lambsquarters (Chenopodium album) and two pigweed species (Amaranthus spp.) in corn (Zea mays). Weed Science 34: 440–443.

    CAS  Google Scholar 

  • Fuller, H. J. 1949. Photoperiodic responses of Chenopodium quinoa Willd. and Amaranthus caudatus L. American Journal of Botany 36: 175–180.

    Article  Google Scholar 

  • Gaines, T. A., W. Zhang, D. Wang, B. Bukun, S. T. Chisholm & D. L. Shaner. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences 107: 1029–1034.

    Article  CAS  Google Scholar 

  • ———, S. M. Ward, B. Bukun, C. Preston, J. E. Leach & P. Westra. 2012. Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species. Evolutionary Applications, Blackwell Publishing Ltd. pp. 529–538.

  • Gallagher, R. S. & J. Cardina. 1997. Soil water thresholds for photo induction of redroot pigweed germination. Weed Science 45: 414–418.

    CAS  Google Scholar 

  • ——— & ———. 1998a. Phytochrome-mediated Amaranthus germination I: Effect of seed burial and germination temperature. Weed Science 46: 48–52.

    CAS  Google Scholar 

  • ——— & ———. 1998b. Phytochrome-mediated Amaranthus germination II: Development of very low fluence sensitivity. Weed Science 46: 53–58.

    CAS  Google Scholar 

  • Garcia, L. A., M. A. Alfaro & R. Bressani. 1987. Digestibility and nutritional value of crude-oil from three amaranth species. Journal of the American Oil Chemists’ Society 64: 371–375.

    Article  CAS  Google Scholar 

  • Garman, H. 1892. The pigweed flea beetle. Second. Ann. Rep. Kentucky Agr. Exp. Sta. 1889: 27–30.

    Google Scholar 

  • Ghersa, C. M. & J. S. Holt. 1995. Using phenology prediction in weed management: a review. Weed Research 35: 461–470.

    Article  Google Scholar 

  • ———, R. L. Benech-Arnold & M. A. Martinez-Ghersa. 1992. The role of fluctuating temperatures in germination and establishment of Sorghum halepense. Regulation of germination at increasing depths. Functional Ecology 6: 460–468.

  • Ghorbani, R., W. Seel & C. Leifert. 1999. Effects of environmental factors on germination and emergence of Amaranthus retroflexus. Weed Science 47: 505–510.

    CAS  Google Scholar 

  • ———, ———, A. Litterick & C. Leifert. 2000. Evaluation of Alternaria alternate for biological control of Amaranthus retroflexus. Weed Science 48: 474–480.

    Article  CAS  Google Scholar 

  • Ghosh, B. K. & N. K. Bruin. 1997. Dormancy and viability of grain amaranth seeds. Indian Journal of Plant Physiology 2: 15–17.

    Google Scholar 

  • Gossett, B. J., E. C. Murdock & J. E. Toler. 1992. Resistance of palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technology 6: 587–591.

    CAS  Google Scholar 

  • Grant, W. F. 1959a. Cytogenetic studies in Amaranthus. II. Natural interspecific hybridization between A. dubius and A. spinosus. Canadian Journal of Botany 37: 1063–1070.

    Article  Google Scholar 

  • ———. 1959b. Cytogenetic studies in Amaranthus. III. Chromosome numbers and phylogenetic aspects. Canadian Journal of Genetics and Cytology 1: 313–328.

    Article  Google Scholar 

  • Green, J. D., W. W. Witt & J. R. Martin. 2006. Weed management in grass pastures, hayfields and other farmstead sites. University of Kentucky. Ext. Pub. AGR-172.

  • Greizerstein, E. J. & L. Poggio. 1992. Cytogenetic studies in six inter-specific hybrids of Amaranthus (Amaranthaceae). Darwiniana 31: 159–165.

    Google Scholar 

  • ———. 1995. Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breeding 114: 448–450.

    Article  Google Scholar 

  • ———, C. A. Naranjo & L. Poggio. 1997. Karyological studies in five wild species of Amaranthus. Cytologia 62: 115–120.

  • Grichar, W. J. 1997. Control of palmer amaranth (Amaranthus palmeri) in peanut (Arachis hypogaea) with post emergence herbicides. Weed Technology 11: 739–743.

    CAS  Google Scholar 

  • Grubben, G. J. H. & D. H. van Sloten. 1981. Genetic resources of amaranths. Intl. Board for Plant Genetic Resources, Food and Agric. Org., Rome.

  • Gudu, S. & V. K. Gupta. 1988. Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla. Euphytica 37: 23–26.

    Article  Google Scholar 

  • Guo, P. & K. Al-Khatib. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), palmer amaranth (Amaranthus palmeri), and common waterhemp (A. rudis). Weed Science 51: 869–875.

    Article  CAS  Google Scholar 

  • Gutterman, Y. & G. Genotypic. 1997. Phenotypic and opportunistic germination strategies of some common desert annuals compared with other seed dispersal and germination strategies In: Ellis, R.H. and Black, M. (eds), Basic and applied aspects of seed biology. Kluwer Academic Publishers. pp. 611–622.

  • ———, F. Corbineau & D. Come. 1992. Interrelated effects of temperature, light and oxygen on Amaranthus caudatus L. seed germination. Weed Research 32: 111–117.

  • Guzzella, L., F. Pozzoni & G. Giuliano. 2006. Herbicide contamination of surficial groundwater in Northern Italy. Environmental Pollution 142: 344–353.

    Article  CAS  PubMed  Google Scholar 

  • Habib, S. A. & H. L. Morton. 1987. The combined effect of temperature and water potential on side oats grama and redroot pigweed seeds germination. Iraqi Journal of Agricultural Science 5: 15–24.

    Google Scholar 

  • Hanf, M. 1984. Ackerunkra¨uter Europas mit ihren Keimlingen, pp. 166–70. Ludwigshafen: BASFAG.

  • Haramoto, E. R. & E. R. Gallandt. 2005. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus retroflexus). Weed Science 53:702–708.

    Article  CAS  Google Scholar 

  • Hartzler, R. G., D. G. Buhler & D. E. Stoltenberg. 1999. Emergence characteristics of four annual weed species. Weed Science 47: 578–584.

    CAS  Google Scholar 

  • ———, B. A. Battles & D. Nordby. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Science 52: 242–245.

  • Hauptli, H. & S. Jain. 1985. Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica 66: 21–27.

    Article  Google Scholar 

  • Hausman, N. E., S. Singh, P. J. Tranel, D. E. Riechers, S. S. Kaundun, N. D. Polge, D. A. Thomas & A. G. Hager. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Management Science 67: 258–261.

    Article  CAS  PubMed  Google Scholar 

  • Heap, I. 2014. The international survey of herbicide resistant weeds. In Western Society of Weed Science (USA). Web page http://www.weedscience.org/in.asp (Accessed October 2, 2014).

    Google Scholar 

  • Heidarian, H., M. R. Hadi, H. S. Mahmoodabadi & M. N. Kalateh. 2012. Competitive effects of redroot pigweed (Amaranthus retroflexus) on three sunflowers (Helianthus annus) cultivars. International Journal of Agronomy and Plant Production 3: 84–88.

    Google Scholar 

  • Heiser Jr., C. B. & T. W. Whitaker. 1948. Chromosome number, polyploidy, and growth habit in California weeds. American Journal of Botany 179–186.

  • Hendrick, L. W., W. F. Meggitt & D. Penner. 1974. Basis for selectivity of phenmedipham and desmedipham on wild mustard, redroot pigweed, and sugar beets. Weed Science 22: 179–184.

    CAS  Google Scholar 

  • Hendricks, S. B., V. K. Toole & H. A. Borthwick. 1968. Opposing actions of light in seed germination of Poa pratensis and Amaranthus arenicola. Plant Physiology 43: 2023–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks, S. K., P. H. Munger, J. R. Abernathy & C. W. Wendt. 1986. Effect of amaranth allelopathic compounds on crops. In Proceedings of Southern Weed Science Society 411.

    Google Scholar 

  • Holm, R. E. 1972. Volatile metabolites controlling germination in buried weed seeds. Plant Physiology 50: 293–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ——— & M. R. Miller. 1972. Weed seed germination responses to chemical and physical treatments. Weed Science 20: 150–153.

  • Holm, L. G., D. L. Plunkett, J. V. Pancho & J. P. Herberger. 1977. The world’s worst weeds-distribution and biology. University Press of Hawaii 606.

  • ———, J. V. Pancho, J. P. Herberger & D. L. Plucknett. 1979. A geographical atlas of world weeds. New York, USA: John Wiley and Sons.

  • Horak, M. J. 1997. The changing nature of palmer amaranth: a case study. Proceedings of the North Central Weed Science Society 52: 161.

    Google Scholar 

  • ——— & T. M. Loughin. 2000. Growth analysis of four Amaranthus species. Weed Science 48: 347–355.

  • ——— & D. E. Peterson. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technology 9: 192–195.

  • Howell, C. R. & R. D. Stipanovic. 1984. Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74: 1346–1349.

    Article  Google Scholar 

  • Huang, J. Z., A. Shrestha, M. Tollenaar, W. Deen, H. Rahimian & C. J. Swanton. 2000. Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Canadian Journal of Plant Science 80: 929–938.

    Article  Google Scholar 

  • Hyvönen, T. 2011. Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agriculture and Food Science 20: 183–190.

    Article  Google Scholar 

  • Iamonico, D. 2010. Biology, life-strategy and invasiveness of Amaranthus retroflexus L. (Amaranthaceae) in central Italy: preliminary remarks. Botanica Serbica 34: 137–145.

    Google Scholar 

  • Itoh, K., M. Azmi & A. Ahmad. 1992. Paraquat resistance in Solanum nigrum, Crassocephalum crepidioides, Amaranthus lividus and Conyza sumatrensis in Malaysia. 1st International Weed Control Congress, Melbourne, Australia 2: 224–228.

    Google Scholar 

  • Jacobsen, S. E., A. Mujica & L. Guarino. 2000. The genetic resources of the Andean grain crop amaranth (Amaranthus caudatus L., A. cruentus L. and A. hipochondriacus L.). Proceedings of International Conference on Science and Technology for Managing Plant Genetic Diversity in the twenty-first Century, Kuala Lumpur, Malaysia, 12–16 June.

  • Jahaniaval, F., Y. Kakuda & M. F. Marcone. 2000. Fatty acid and triacylglycerol composition of seed oils of five Amaranthus accessions and their comparison to other oils. Journal of the American Oil Chemists’ Society 77: 847–852.

    Article  CAS  Google Scholar 

  • Jha, P., J. K. Norsworthy & M. S. Malik. 2007. Effects of tillage and soybean canopy formation on temporal emergence of palmer amaranth from a natural seed bank. Weed Science Society 60.

  • ———, ———, M. B. Riley & W. Bridges Jr. 2008a. Acclimation of palmer amaranth (Amaranthus palmeri) to shading. Weed Science 56: 729–734.

    Article  CAS  Google Scholar 

  • ———, ———, ———, & ———. 2008b. Influence of glyphosate timing and row width on palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Science 56: 408–415.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & ———. 2008c. Temperature and light requirements for germination of palmer amaranth over a 12-month period. Weed Science 58: 426–432.

    Article  CAS  Google Scholar 

  • ———, ———, ——— & ———. 2010. Annual changes in temperature and light requirements for germination of palmer amaranth (A. palmeri) seeds retrieved from soil. Weed Science 58: 426–432.

    Article  CAS  Google Scholar 

  • Julien, M. H. 1992. Biological control of weeds. A world catalogue of agents and their target weeds. 3rd edition. pp. 186.

  • Kadman-Zahavi, A. 1960. Effect of short and continuous illuminations on the germination of Amaranthus retroflexus seeds. Bulletin of the Research Council of Israel 9: 1–20.

    Google Scholar 

  • Kagali, R. N., E. N. Kioko, Z. Osiemo, S. Muya & C. Wachera. 2013. Insect abundance and diversity on cultivated Amaranthus spp. (Amaranthacea) in Meru County, Kenya. American International Journal of Contemporary Research 3: 110–116.

    Google Scholar 

  • Karssen, C. M. 1982. Seasonal patterns of dormancy in weed seeds. In: Khan, A.A. (ed) The physiology and biochemistry of seed development, dormancy and germination. Amsterdam: Elsevier Biomedical Press pp. 243–270.

    Google Scholar 

  • Kataryan, B. T. 1975. The search for bacterial cultures with herbicidal activity. Doklady Akademii Nauk Armyanskoi SSR 61: 110–112.

    Google Scholar 

  • Keeley, P. E. & R. J. Thullen. 1989. Growth and competition of black nightshade (Solanum nigrum) and palmer amaranth (Amaranthus palmeri) with cotton (Gossypium hirsutum). Weed Science 37: 326–334.

    Google Scholar 

  • ———, C. H. Carter & R. J. Thullen. 1987. Influence of planting date on growth of palmer amaranth (Amaranthus palmeri). Weed Science 35: 199–204.

  • Kegode, G. O., R. B. Pearce & T. B. Bailey. 1998. Influence of fluctuating temperatures on emergence of shattercane (Sorghum bicolor) and giant foxtail (Setaria faberi). Weed Science 46: 330–335.

    CAS  Google Scholar 

  • Kendig, J. A. 2009. Palmer amaranth (Amaranthus palmeri) management. Available at http://ncc.confex.com/ncc/2006/techprogram/P4499.html.

  • Kendrick, R. E., & B. Frankland. 1969. Photocontrol of germination in Amaranthus caudatus. Planta 85: 326–339.

    Article  CAS  PubMed  Google Scholar 

  • ———, C. J. P. Spruit & B. Frankland. 1969. Phytochrome in seeds of Amaranthus caudatus. Planta 88: 293–302.

  • ——— & M. Bihun. 2002. Induction of secondary dormancy in A. caudatus seeds. Plant Growth Regulation 38: 135–140.

  • ——— & P. Sznigir. 2012. Response of Amaranthus retroflexus L. seeds to gibberellic acid, ethylene and abscisic acid depending on duration of stratification and burial. Plant Growth Regulation 70: 15–26.

  • ———, E. Corbineau & D. Come. 1996. Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane 1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Regulation 20: 259–265.

  • ———, E. Kępczyńska & M. Bihun. 2003. The involvement of ethylene in the release of primary dormancy in A. retroflexus seeds. Plant Growth Regulation 38: 57–62.

  • Khan, A. G., G. M. Baloch & M. A. Ghani. 1978. Natural enemies of Abutilon, Amaranthus, Rumex and Sorghum. Commonwealth Institute of Biological Control. Report of work carried out January 1977 42–43.

    Google Scholar 

  • Khanh, T. D., I. M. Chung, T. D. Xuan & S. Tawata. 2005. The exploitation of crop allelopathy in sustainable agricultural production. Journal of Agronomy and Crop Science 191: 172–184.

    Article  Google Scholar 

  • Khoshoo, T. N. & M. Pal. 1972. Cytogenetic patterns in Amaranthus. Chromosomes Today 3: 259–267.

    Google Scholar 

  • Kigel, J. 1994. Development and ecophysiology of Amaranths. Amaranth: Biology, chemistry, and technology 39–73.

    Google Scholar 

  • ———, M. Ofir & D. Koller. 1977. Control of the germination responses of Amaranthus retroflexus L. seeds by their parental photothermal environment. Journal of Experimental Botany 28: 1125–1136.

  • Klingaman, T. E. & L. R. Oliver. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Science 42: 523–527.

    CAS  Google Scholar 

  • Knezevic, S. Z. & M. J. Horak. 1998. Influence of emergence time and density on redroot pigweed (Amaranthus retroflexus). Weed Science 46: 665–672.

    CAS  Google Scholar 

  • ———, S. F. Weise & C. J. Swanton. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Science 42: 568–573.

  • Kolaib, M. O., M. F. W. Younes & E. T. E. Darwish. 1986. Hypolixus nubilosus as a factor in biological control of Amaranthus weeds in Egypt. Annals of Agricultural Science 31: 767–776.

    Google Scholar 

  • Koul, A. K., A. K. Wakhlu & J. L. Karihaloo. 1976. Chromosome numbers of some flowering plants of Jammu (Western Himalyas) II. Chromosome Information Service 20: 32–33.

    Google Scholar 

  • Kulakow, P. A. 1990. Simply inherited genetic variation in grain amaranth. In: Janick, J. and Simon, J.E. (eds.) Advances in New Crops. Timber Press, Portland, OR, USA.

  • Kunth, K. S. 1838. Flora Berolinensis, Duncker and Humblot, Berlin, Germany 2: 144–145.

    Google Scholar 

  • Lanta, V., P. Havránek & V. Ondrej. 2003. Morphometry analysis and seed germination of Amaranthus cruentus, A. retroflexus and their hybrid (A. x turicensis). Plant Soil and Environment 49: 364–369.

    Google Scholar 

  • Legleiter, T. R. & K. W. Bradley. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Science 56: 582–587.

    Article  CAS  Google Scholar 

  • Lehmann, J. W. 1996. Case history of grain Amaranthus and alternative crop. Cereal Foods World 41: 399–411.

    Google Scholar 

  • Leon, R. G. & M. D. K. Owen. 2003. Regulation of weed seed dormancy through light and temperature interactions. Weed Science 51: 752–758.

    Article  CAS  Google Scholar 

  • ——— & ———. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Science 54: 1037–1044.

    Article  CAS  Google Scholar 

  • ———, A. D. Knapp & M. D. K. Owen. 2004. Effect of temperature on the germination of common waterhemp (Amaranthus tuberculatus), giant foxtail (Setaria faberi), and velevetleaf (Abutilon theophrasti). Weed Science 52: 67–73.

  • ———, D. C. Basshami & M. D. K. Owen. 2007. Thermal and hormonal regulation of the dormancy-germination transition in Amaranthus tuberculatus seeds. Weed Research 47: 335–344.

  • Leon-Camacho, M., D. L. Garcia-Gonzalez & R. Aparicio. 2001. A detailed study of amaranth (Amaranthus cruentus L.) oil fatty profile. European Food Research and Technology 213: 349–355.

    Article  CAS  Google Scholar 

  • Linnaeus, C. 1753. Species Plantarum, Laurentius Salvius, Stockholm, Sweden 2: pp. 989.

    Google Scholar 

  • Litch, M. A. & M. Al-Kaisi. 2005. Strip-tillage on seedbed soil temperature and other soil physical properties. Soil and Tillage Research 80: 233–249.

    Article  Google Scholar 

  • Liu, F. & H. Stützel. 2002. Leaf water retention of vegetable amaranth (Amaranthus spp.) in response to soil drying. European Journal of Agronomy 16: 137–150.

    Article  Google Scholar 

  • Liu, J., A. S. Davis & P. J. Tranel. 2012. Pollen biology and dispersal dynamics in waterhemp (Amaranthus tuberculatus). Weed Science 60: 416–422.

    Article  CAS  Google Scholar 

  • Lolas, P. H. 1981. Weeds population interference in barley and tobacco. ln Panhellmic Congress of Geotechnical Research. Absract. 24 institution kapnou, Drama, Greece.

  • Lolas, P. C. 1986. Weed community interference in barley and tobacco (Nicotiana tabacum L.). Weed Research 26: 1–8.

    Article  Google Scholar 

  • Long, J. J. & J. O. Berry. 1996. Tissue-specific and light-mediated expression of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Plant Physiology 112: 473–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———, J. L. Wang & J. O. Berry. 1994. Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Journal of Biological Chemistry 269: 2827–2833.

  • López, J. F. O., A. A. Garcia, M. A. D. Huato, M. H. Lara, F. J. Saenz-de-cabezon, I. Perez-Moreno & V. Marco-Mancebon. 2011. Insect occurrence and losses due to phytophagous species in the amaranth (Amaranthus hypocondriacus L.) in Puebla, Mexico. African Journal of Agricultural Research 6: 5924–5929.

    Google Scholar 

  • Lorenz, K. & Y. S. Hwang. 1985. Lipids in amaranths. Nutrition Reports International 31: 83–89.

    CAS  Google Scholar 

  • Macharia, C. & E. B. Peffley. 1995. Suppression of Amaranthus spinosus and Kochia scoparia: evidence of competition or allelopathy in Allium fistulosum. Crop Protection 14: 155–158.

    Article  Google Scholar 

  • Madhusoodanan, K. J. & M. A. Nazeer. 1983. Comparative morphology of the somatic karyotypes of vegetable amaranths and its phylogenetic significance. Cytologia 48: 237–244.

    Article  Google Scholar 

  • Mahmudzadeh, A., M. Nojavan & Z. Bagheri. 2003. Study of effect of different treatments on dormancy breaking and germination stimulation of seeds of wild amaranth. Scientific Journal of Agriculture 26: 13–25.

    Google Scholar 

  • Malefyt, T. & W. B. Duke. 1984. Pendimethalin phytotoxicity to velvetleaf (Abutilon theophrasti) and powell amaranth (Amaranthus powellii). Weed Science 32: 520–524.

    CAS  Google Scholar 

  • Manley, B. S., H. P. Wilson & T. E. Hines. 1996. Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone and sulfonylurea herbicides. Weed Technology 10: 835–841.

    CAS  Google Scholar 

  • Marayama, A., M. Yoshiyama & Y. Eashi. 1997. Possible participation of beta cyanoalanine synthase in increasing the amino acid pod of cocklebur seeds in response to ethylene during the per-germination period. Australian Journal of Plant Physiology 24: 751–757.

    Article  Google Scholar 

  • Massinga, R. A. & R. S. Currie. 2002. Impact of palmer amaranth (Amaranthus palmeri) on corn (Zea mays) grain yield and yield and quality of forage. Weed Technology 16: 532–536.

    Article  Google Scholar 

  • ———, ———, M. J. Horak & J. Boyer. 2001. Interference of palmer amaranth in corn. Weed Science 49: 202–208.

    Article  CAS  Google Scholar 

  • ———, ———, & T. P. Trooien. 2003. Water use and light interception under palmer amaranth (Amaranthus palmeri) and corn competition. Weed Science 51: 523–531.

    Article  CAS  Google Scholar 

  • Mayo, C. M., M. J. Horak, D. E. Peterson & J. E. Boyer. 1995. Differential control of four Amaranthus species by six post emergence herbicides in soybean (Glycine max). Weed Technology 9: 141–147.

    CAS  Google Scholar 

  • McKeon, G. M. & J. J. Mott. 1982. The effect of temperature on the field softening of hard seed of Stylosanthes humilus and S. hamata in a dry monsoonal climate. Australian Journal of Agricultural Research 33: 75–85.

    Article  Google Scholar 

  • McLachlan, S. M., C. J. Swanton, S. F. Weise & M. Tollenaar. 1993a. Effect of corn induced shading and temperature on rate of leaf appearance in redroot pigweed (Amaranthus retroflexus L.). Weed Science 41: 590–593.

    Google Scholar 

  • ———, M. Tollenaar, C. J. Swanton & S. F. Weise. 1993b. Effect of corn induced shading on dry matter accumulation, distribution, and architecture of redroot pigweed (Amaranthus retroflexus). Weed Science 41: 568–573.

  • Mclntyre, T. & G. M. Lewis. 1997. The advancements of phytoremediation as innovative environmental technology for stabilization, remediation and restoration of contaminated sites. Journal of Soil Contamination 6: 227–231.

    Article  Google Scholar 

  • Mcmullan, P. M. & J. M. Green. 2011. Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technology 25: 514–518.

    Article  CAS  Google Scholar 

  • McWilliams, E. L., R. Q. Landers & J. P. Mahlstede. 1968. Variation in seed weight and germination in population of Amaranthus retroflexus L. Ecology 49: 290–296.

    Article  Google Scholar 

  • Mellem, J. J. 2008. Phytoremediation of heavy metals in Amaranthus dubius. (Doctoral dissertation).

  • Mendoza, G. L. & M. M. Rodriguez. 1990. Aislamiento, identification y patogenicidad de bacterias en quelite Amaranthus hybridus L. y su posibilidad en el control biologico. Revista Chapingo 15: 66–69.

    Google Scholar 

  • Menges, R. M. 1987. Allelopathic effects of palmer amaranth (Amaranthus palmeri) and other plant residues in soil. Weed Science 35: 339–347.

    Google Scholar 

  • ———. 1988. Allelopathic effects of palmer amaranthus (Amaranthus palmeri) on seedling growth. Weed Science 36: 325–328.

    Google Scholar 

  • Meyers, S. L., K. M. Jennings, J. R. Schultheis & D. W. Monks. 2010. Interference of palmer amaranth (Amaranthus palmeri) in sweet potato. Weed Science 58: 199–203.

    Article  CAS  Google Scholar 

  • Milan, P. R. 2008. Chromosome behaviour and fertility in induced polyploids of grain amaranths. Caryologia 61: 199–205.

    Article  Google Scholar 

  • Milberg, P. & L. Andersson. 1997. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Canadian Journal of Botany 75: 1998–2004.

    Article  Google Scholar 

  • Mintz, A. S. & G. J. Weidemann. 1992. Evaluation of Aposphaeria amaranthi as a potential bioherbicide for Amaranthus. In Biological Control of Weeds, Eighth International Symposium pp. 68.

  • Mitich, L. W. 1997. Redroot pigweed (Amaranthus retroflexus). Weed Technology 11: 199–202.

    Google Scholar 

  • Mlakar, S. G., M. Turinek, M. Jakop, M. Bavec & F. Bavec. 2009. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6: 43–53.

    Google Scholar 

  • Mnkeni, A. P. 2005. The underutilized plant with high nutritional quality and economic potential. Agricultural and Rural Development Research Institute, Newsletter, University of Fort Hare. July to December 2005.

  • Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecological Applications 3: 53–73.

    Article  PubMed  Google Scholar 

  • Monks, D. M. & L. R. Oliver. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Science 36: 770–774.

    Google Scholar 

  • Moolani, M. K., E. L. Knake & F. W. Slife. 1964. Competition of smooth pigweed with corn and soybeans. Weeds 12: 126–128.

    Article  Google Scholar 

  • Moore, T. C. 1979. Biochemistry and physiology of plant hormones. New York: Springer-Verlag. pp. 199–201.

    Book  Google Scholar 

  • Moore, J. W., D. S. Murray & R. B. Westerman. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technology 18: 23–29.

    Article  Google Scholar 

  • Morgan, G. D., P. A. Baumann & J. M. Chandler. 1997. The effect of palmer amaranth competition on cotton growth and yield. Southern Weed Science Society 50: 149–150.

    Google Scholar 

  • ———, ——— & ———. 2001. Competitive impact of palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technology 15: 408–412.

    Article  Google Scholar 

  • Mosyakin, S. L. & K. R. Robertson. 1996. New infrageneric taxa and combinations in Amaranthus L. (Amaranthaceae). Annales Botanici Fennici 33: 275–281.

    Google Scholar 

  • ——— & ———. 2003. Amaranthus. In: Flora of North America, Oxford University Press, New York 1: 410–435.

    Google Scholar 

  • Mposi, M. S. 1999. Vegetable amaranth improvement for South Africa. The Australian New Crops Newsletter, Issue No. 11.

  • Mueller, T. C., L. E. Steckel, J. S. McElroy & T. C. Teuton. 2006. An update on herbicide resistance in Tennessee. Proceedings of the Southern Weed Science Society 59: 133.

    Google Scholar 

  • Müller, K. & T. Borsch. 2005. Phylogenetics of amaranthaceae based on matK/trnK sequence data: Evidence from parsimony, likelihood, and Bayesian analyses. Annals of the Missouri Botanical Garden 92: 66–102.

    Google Scholar 

  • Müller-Schärer, H. 1993. Biological control of weeds in crops: a proposal of a new COST action. In: Maitrise des adventises par voie non chimique. IFOAM Conference, Dijon 181–185.

    Google Scholar 

  • Mulligan, G. A. 1984. Chromosome numbers of some plants native and naturalized in Canada. Naturaliste Canadien 111: 447–449.

    Google Scholar 

  • Munger, P. H., J. R. Abernathy & J. R. Gipson. 1983. The influence of selected plant residues on cotton (Abstract). In Proceedings of the Southern Weed Science Society 36th Annual Meeting, pp. 37.

  • Murray, M. J. 1938. Interspecific and intergeneric crosses in the family Amaranthaceae. Ph.D. Thesis. Cornell University, Ithaca, New York.

  • ——— 1940. The genetics of sex determination in the family Amaranthaceae. Genetics 25: 409–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, R. L. 1996. Amaranth: New crop opportunity. pp. 207–220. In: J. Janick (ed.), Progress in new crops. ASHS Press, Alexandria, VA.

    Google Scholar 

  • ———. 1998. Nitrogen fertilizer effect on grain amaranth. Agronomy Journal 90: 597–602.

    Article  Google Scholar 

  • ——— & ——— 1988. Growing grain amaranth as a specialty crop. Communication and Educational Technology Services, University of Minnesota Extension.

    Google Scholar 

  • Nandula, V. K., J. D. Ray, D. N. Ribeiro, Z. Pan & K. N. Reddy. 2013. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and non target-site mechanisms. Weed Science 61: 374–383.

    Article  CAS  Google Scholar 

  • Napompeth, B. 1982. Biological control research and development in Thailand. In Proceedings of the International Conference on Plant Protection Tropics, Kuala Lumpur, Malaysia, pp. 301–323.

    Google Scholar 

  • ———. 1989. Biological control of insect pests and weeds in Thailand. Biological control of pests. BIOTROP Special Publication 36: 51–68.

    Google Scholar 

  • ———. 1992. Brief overview of biological control activities in Thailand. Biological Control in South and East Asia. Kyushu University Press, Japan, pp. 51–68.

    Google Scholar 

  • Narwall, S. S. 1994. Allelopathy in crop production. Scientific Publishers: Jodhpur. pp. 288.

    Google Scholar 

  • National Academy of Sciences. 1975. Underexploited tropical plants with promising economic value. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • National Research Council. 1984. Amaranth: Modern prospects for an ancient crop. National Academy Press. Washington DC.

    Google Scholar 

  • National Research Council. 1989. Lost Crops of the Incas. National Academy Press. Washington, DC.

    Google Scholar 

  • Nordby, D., R. Hartzler & K. Bradley. 2010. Biology and management of waterhemp. The Glyphosate, Weeds, and Crops Series, by the Glyphosate, Weeds, and Crops Group (http://www.glyphosateweedscrops.org/). Published by Purdue Extension, Purdue University, Lafayette, Indiana, USA.

  • Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technology 17: 195–201.

    Article  Google Scholar 

  • ———. 2004. Soybean canopy formation effects on pitted morning glory (Ipomoea lacunosa), common cocklebur (Xanthium strumarium), and sickle pod (Senna obtusifolia) emergence. Weed Science 52: 954–960.

    Article  CAS  Google Scholar 

  • ——— 2005. Optimizing glyphosate timing in a mixed stand of glyphosate resistant conventional, drill seeded soybean. Weed Technology 19: 942–946.

    Article  CAS  Google Scholar 

  • ——— & M. J. Oliveira. 2007. Tillage and soybean canopy effects on common cocklebur (Xanthium strumarium) emergence. Weed Science 55: 474–480.

  • ———, G. M. Griffith, R. C. Scott, K. L. Smith & L. R. Oliver. 2008. Confirmation and control of glyphosate-resistant palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technology 22: 108–113.

  • O’Brien, G. K. & M. L. Price. 1983. Amaranth: Grain and vegetable type. Educational Concerns for Hunger Organization (ECHO) Technical Note. ECHO, North Fort Myers, FL.

    Google Scholar 

  • Ogunyemi, S., R. O. Awodoyin & N. A. Otu. 2000. Chemical control of Ageratum conyzoides, Amaranthus spinosus and Cyperus rotundus in soybeans [Glycine max (L.) Merril.]. Journal of Tropical Forest Resources 16: 143–151.

    Google Scholar 

  • ———, S. E. Ibrahim, O. O. Koleowo & R. O. Awodoyin. 2005. Competitive impact of Amaranthus spinosus in Celosia argentia and Corchorus olitorius production in Southwestern Nigeria. African Crop Science Conference Proceedings 6: 53–57.

  • Oke, O. L. 1983. Amaranth. In: Handbook of tropical foods. Marcel Dekker, New York, 1.

  • Oladiran, J. A. & P. M. Mumford. 1985. The stimulation of seed germination by temperature and light in agronomic Amaranthus species. Biochemie und Physiologie der Pflanzen 180: 45–54.

    Article  Google Scholar 

  • Oliveira, J. S. & M. F. de Carvalho. 1975. Nutritional value of some edible leaves used in Mozambique. Economic Botany 29: 255–263.

    Article  CAS  Google Scholar 

  • Omami, E. N. & R. W. Medd. 1992. Germination and after-ripening responses in Amaranthus retroflexus seed. Proceedings of the 1st International Weed Control Congress 2: 372–374.

  • ———, A. M. Haigh, R. W. Medd & H. I. Nicol. 1999. Changes in germinability, dormancy and viability of A. retroflexus as affected by depth and duration of burial. Weed Research 39: 345–354.

  • Ortiz Ribbing, L. M. & M. Williams. 2006. Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi as bioherbicides for several weedy Amaranthus species. Crop Protection 25: 39–46.

    Article  Google Scholar 

  • Orwick, P. L. & M. M. Schreiber. 1979. Interference of redroot pigweed (Amaranthus retroflexus) and robust foxtail (Setaria viridis var. robusta-alba or var. robusta-purpurea) in soybeans (Glycine max). Weed Science 27: 665–674.

    Google Scholar 

  • Oryokot, J. O. E., S. D. Murphy & C. J. Swanton. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Science 45: 120–126.

    CAS  Google Scholar 

  • Pal, M. 1964. Chromosone numbers in some Indian angiosperms. Proceedings: Plant Sciences 60: 347–350.

    Google Scholar 

  • ———. 1971. A polyhaploid plant of Amaranthus dubius. Indian Journal of Genetics and Plant Breeding 31: 397–402.

    Google Scholar 

  • ———. 1972. Intraspecific aneuploidy in Amaranthus graecizans. Current Science 41: 262–263.

    Google Scholar 

  • ——— & T. N. Khoshoo. 1973. Evolution and improvement of cultivated amaranths. VI. Cytogenic relationships in grain types. Theoretical and Applied Genetics 43: 242–251.

  • ——— & T. N. Khoshoo. 1974. Grain amaranths. Evolutionary studies in world crops. Cambridge University Press, Cambridge, 129.

  • ——— & R. M. Pandey. 1989. Cytogenetics and evolution of grain amaranths. Aspects of Plant Science 11: 323–336.

  • ———, R. M. Pandey & T. N. Kashoo. 1982. Evolution and improvement of cultivated amaranths. IX. Cytogenetic relationship between the two basic chromosome numbers. Journal of Heredity 73: 353–356.

  • ———, D. Ohri & G. V. Subrahmanyam. 2000. A new basic chromosome number for Amaranthus (Amaranthaceae). Cytologia 65: 13–16.

  • Palada, M. C. & L. C. Chang. 2003. Suggested cultural practices for vegetable amaranth: International Cooperators’ Guide.

  • Patzoldt, W. L. & P. J. Tranel. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Science 55: 421–428.

    Article  CAS  Google Scholar 

  • ———, ——— & A. G. Hager. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Science 53: 30–36.

    Article  CAS  Google Scholar 

  • Peters, I. & S. Jain. 1985. Genetic-variation of sex expression cultivated Amaranthus spp.—solution to many puzzles. American journal of Botany 72: 878.

  • ——— & ———. 1987. Genetics of grain amaranths III. 3. Gene-cytoplasmic male-sterility. Journal of Heredity 78: 251–256.

    Article  Google Scholar 

  • Peterson, D. E. 1999. The impact of herbicide resistant weeds in Kansas. Weed Technology 13: 632–635.

    Google Scholar 

  • Petr, J., I. Michalik, H. Tlaskalova, I. Capouchova, O. Famera, D. Urminska, L. Tukova & H. Knoblochova. 2003. Extension of the spectra of plant products for the diet in celiac disease. Czech journal of food sciences 21: 59–70.

    CAS  Google Scholar 

  • Plate, A. Y. A. & J. A. G. Areas. 2002. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chemistry 76: 1–6.

    Article  CAS  Google Scholar 

  • Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Management Science 64: 360–365.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, D. B., M. D. K. Owen, L. G. Clark & A. Gardner. 1999. Identification of the weedy pigweeds and waterhemps of Iowa. Iowa State University, University Extension.

    Google Scholar 

  • Price, A. J., K. S. Balkcom, S. A. Culpepper, J. A. Kelton, R. L. Nichols & H. Schomberg. 2011. Glyphosate-resistant palmer amaranth: A threat to conservation tillage. Journal of Soil and Water Conservation 66: 265–275.

    Article  Google Scholar 

  • Putnam, D. H., E. S. Oplinger & E. M. Schulte. 1989. Amaranth: Altenative field crops manual. Centre for Alternative Plant & Animal Products, Minnesota Extension Service, University of Minnesota, St. Paul, MN 55108.

  • Qasem, J. R. 1994. Allelopathic effects of pigweed (Amaranthus spp.) on barley (Hordeum vulgare). Dirasat 21: 101–120.

    Google Scholar 

  • ———. 1995a. Allelopathic effects of Amaranthus retroflexus and Chenopodium murale on vegetable crops. Allelopathy Journal 2: 49–66.

    Google Scholar 

  • ———. 1995b. Allelopathic effects of three Amaranthus spp. (pigweed) on wheat (Triticum durum). Weed Research 35: 41–49.

    Article  Google Scholar 

  • Railey, K. 1993. Amaranth: A healthy grain for vegetarian recipes. Health & Beyond Online.

    Google Scholar 

  • Ramesh, B. & P. Kumar. 2009. Meiotic chromosome analysis in inter-specific f1 hybrids of grain amaranths. Journal of Biological Sciences 1: 105–112.

    Google Scholar 

  • Rana, J. C., K. Pradheep, S. K. Yadav, V. D. Verma & P. C. Sharma. 2007. Durga: A new variety of grain amaranth for cultivation in hill regions. Indian Farming 57: 27–28.

    Google Scholar 

  • Randall, R. P. 2007. The global compendium of weeds (http://www.hear.org/gcw/). AgWest and the Hawaiian Ecosystems at Risk (HEAR) project.

  • Rayburn, A. L., R. McCloskey, T. C. Tatum, G. A. Bollero, M. R. Jeschke & P. J. Tranel. 2005. Genome size analysis of weedy Amaranthus species. Crop Science 45: 2557–2562.

    Article  CAS  Google Scholar 

  • Regnier, E. E. & S. K. Harrison. 1993. Compensatory responses of common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti) to partial shading. Weed Science 41: 541–547.

    Google Scholar 

  • Rezaie, F. & M. Yarnia. 2009. Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cynodon dactylon on germination and growth of safflower. Journal of Food, Agriculture and Environment 7: 516–521.

    Google Scholar 

  • Riggins, C. W., Y. H. Peng, C. N. Stewart & P. J. Tranel. 2010. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Management Science 66: 1042–1052.

    Article  CAS  PubMed  Google Scholar 

  • Rizvi, S. J. H. & V. Rizvi. 1992. Allelopathy: Basic and applied aspects. First Edition. Chapman and Hall.

    Book  Google Scholar 

  • Robertson, K. 1981. The genera of Amaranthaceae in the Southeastern United States. Journal of the Arnold Arboretum 62: 267–314.

    Article  Google Scholar 

  • Rodríguez-Gacio, M. C., M. A. Matilla-Vázquez & A. J. Matilla. 2009. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling and Behavior 4: 1035–1049.

    Article  Google Scholar 

  • Rowland, M. W., D. S. Murray & L. M. Verhalen. 1999. Full-season palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Science 47: 305–309.

    CAS  Google Scholar 

  • Rushing, D. W., D. S. Murray & L. M. Verhalen. 1985. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Science 33: 815–818.

    Google Scholar 

  • Sage, R. F., T. L. Sage, R. W. Pearcy & T. Borsch. 2007. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. American Journal of Botany 94: 1992–2003.

    Article  PubMed  Google Scholar 

  • Santelmann, P. W. & L. Evetts. 1971. Germination and herbicide susceptibility of six pigweed species. Weed Science 19: 51–54.

    CAS  Google Scholar 

  • Sanz-Penella, J. M., M. Wronkowska, M. Soral-Smietana & M. Haros. 2013. Effect of whole amaranth flour on bread properties and nutritive value. Food Science and Technology 50: 679–685.

    CAS  Google Scholar 

  • Sattin, M., M. C. Zuin & I. Sartorato. 1994. Light quality beneath field-grown maize, soybean, and wheat canopies-red: far red variations. Physiologia Plantarum. 91: 322–328.

    Article  Google Scholar 

  • Sauer, J. D. 1950. The grain amaranths: a survey of their history and classification. Annals of the Missouri Botanical Garden 37: 561–632.

    Article  Google Scholar 

  • ———. 1955. Revision of the dioecious amaranths. Madrono 13: 5–46.

    Google Scholar 

  • ———. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11: 11–31.

    Article  Google Scholar 

  • ———. 1967. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden 103–137.

  • ———. 1993. Amaranthaceaes: Amaranth family. In Historical Geography of Crop Plants: a Select Roster; CRC Press: Boca Raton, FL; pp. 9–14.

  • Saunders, R. M. & R. Becker. 1984. Amaranthus: A potential food and feed resource. Advances in Cereal Science and Technology 6: 357–396.

    CAS  Google Scholar 

  • Schippers, R. R. 2000. African indigenous vegetables: An overview of the cultivated species. Chatham UK. Natural Resource Institute/ACP-EU Technical Centre for Agricultural Resources and Rural Cooperation.

  • Schonbeck, M. W. & G. H. Egley. 1981a. Phase-sequence of redroot pigweed seed germination responses to ethylene and other stimuli.I. Plant Physiology 68: 175–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ——— & ———. 1981b. Changes in sensitivity of A. retroflexus L seeds to ethylene during preincubation. II. Effects of alternating temperature and burial in soil. Plant Cell and Environment 4: 237–242.

    CAS  Google Scholar 

  • Schroeder, D., H. Müller-Schärer & C. S. A. Stinson. 1993. A European weed survey in 10 major crop systems to identify targets for biological control. Weed Research 33: 449–458.

    Article  Google Scholar 

  • Schuester, M. 1987. Blister beetle in Paraguay–a potential biological control agent. Tropical Pest Management 33: 241.

    Google Scholar 

  • Schütz, W., P. Milberg & B. B. Lamont. 2002. Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Annals of Botany 90: 707–714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scopel, A. L., C. L. Ballare & R. A. Sanchez. 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environment 14: 501–508.

    Article  Google Scholar 

  • Scott, G. H., S. D. Askew & J. W. Wilcut. 2002. Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technology 16: 191–198.

    Article  CAS  Google Scholar 

  • Segura-Nieto, M., A. P. Barba de la Rosa & O. Peredes-López. 1994. Biochemistry of amaranth proteins. Amaranth: Biology, chemistry and technology 75–106.

    Google Scholar 

  • Sellers, B. A., R. J. Smeda, W. G. Johnson, J. A. Kendig & M. R. Ellersieck. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Science 51: 329–333.

    Article  CAS  Google Scholar 

  • Senft, J. P. 1980. Protein quality of amaranth grain. pp. 43–47. In: Proceedings of the Second Amaranth Conference. Rodale Research Report (3).

  • Senseman, S. A., H. G. Hancock, R. D. Wauchope, K. L. Armburst, T. J. Peters, J. H. Massey, D. H. Johnson, J. Reynolds, F. Lichtner, G. E. MacDonald, D. W. Rushing, D. Kitner, H. S. McLean & W. Vencill. 2007. Herbicide handbook 9th edition. Weed Science Society of America Lawrence, KS. pp. 458.

  • Shagal, M. H., H. M. Maina, R. B. Donatus & K. Tadzabia. 2012. Bioaccumulation of trace metals concentration in some vegetables grown near refuse and effluent dumpsites along Rumude-Doubeli bye-pass in Yola North, Adamawa State. Global Advanced Research Journal of Environmental Science and Toxicology 1: 18–22.

    Google Scholar 

  • Shahrokhi, S., M. Darvishzadeh, M. Mehrpooyan & M. Farboodi. 2012. Comparison of allelopathic effects of Amaranthus retroflexus L. different organs extracts on germination and initial growth of Alvand and Zarrin wheat cultivars. International journal of Agronomy and Plant Production 3: 489–494.

    Google Scholar 

  • Sharma, A. K. & M. Banik. 1965. Cytological investigation of different genera of Amaranthaceae with a view to trace their interrelationships. Bulletin of the Botanical Society of Bengal 19: 40–50.

    Google Scholar 

  • Sheidai, M. & Z. Mohammadzadeh. 2008. Cytogenetic study of Amaranthus L. species in Iran. Cytologia 73: 1–7.

    Article  Google Scholar 

  • Sheikh, S. M. & O. Singh. 2013. Pseudocereals and millets: the lost crops of Kashmir. Genetic Resources and Crop Evolution 60: 1191–1199.

    Article  Google Scholar 

  • Shewry, P. R. 2002. The major seed storage proteins of spelt wheat, sorghum, millets and pseudocereals. In: Belton P, Taylor J (eds.), Pseudocereals and less common cereals, grain properties and utilization potential. Springer-Verlag: 1–24.

  • Shimi, P. & F. Termeh. 2004. Weeds of Iran. Agriculture Research, Education and Extension Organization. Tehran, Iran. pp. 36.

    Google Scholar 

  • Shoup, D. E., K. Al-Khatib & D. E. Peterson. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Science 51: 145–150.

    Article  CAS  Google Scholar 

  • Shrefler, J. W., W. M. Stall & J. A. Dusky. 1996. Spiny amaranth (Amaranthus spinosus L.), a serious competitor to crisphead lettuce (Lactuca sativa L.). Horticulture Science 31: 347–348.

    Google Scholar 

  • Sibony, M. & B. Rubin. 2002. The ecological fitness of ALS-resistant Amaranthus retroflexus and multiple-resistant Amaranthus blitoides. Weed Research 43: 40–47.

    Article  Google Scholar 

  • Simbolon, H. & H. Sutarno. 1986. Response of Amaranthus species to various light intensities. Buletin Penelitian Hortikultura 13: 33–42.

    Google Scholar 

  • Singh, U. O., A. M. O. Wadhwani & B.M. Johri. 1983. Dictionary of economic plants of India. Dictionary of economic plants in India., (ed. 2).

  • Singhal, R. S. & P. R. Kulkarni. 1988. Review: Amaranths - an underutilized resource. International Journal of Food Science & Technology 23: 125–139.

    Article  Google Scholar 

  • Singhal, B. K. & D. N. Sen. 1981. Allelopathic potential of pigweed (Amaranthus viridis Linn.) on rain fed crops of Indian desert. Geobios 21: 213–221.

    Google Scholar 

  • Siriwardana, G. D. & R. L. Zimdahl. 1984. Competition between barn-yardgrass (Echinochloa crus-galli) and redroot pigweed (Amaranthus retroflexus). Weed Science 32: 218–222.

    Google Scholar 

  • Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annual review of plant biology 46: 289–315.

    Article  CAS  Google Scholar 

  • Smith, D. T., R. V. Baker & G. L. Steele. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technology 14: 122–126.

    Article  Google Scholar 

  • Song, B., X. Zhang, F. Li & P. Wan. 2002. Chromosome numbers of 14 species in Amaranthus from China. Acta Phytotaxonomica Sinica 40: 428–432.

    Google Scholar 

  • Soomarin, S. J., S. Alipoor & R. Z. Mahmoodabad. 2010. Evaluation of sulfuric acid application in breaking dormancy of goosefoot and red-root amaranth seeds. Plant Ecophysiology 2: 127–131.

    Google Scholar 

  • Souza, M. C. D., L. B. D. Carvalho, P. L. D. C. A. Alves & P. R. F. Giancotti. 2011. Allelopathy in pigweed (a review). Communications in Plant Sciences 1: 5–12.

    Google Scholar 

  • Spalding, R. F., D. G. Watts, D. D. Snow, D. A. Cassada, M. E. Exner & J. S. Schepers. 2003. Herbicide loading to shallow ground water beneath Nabraska’s management systems evaluation area. Journal of environmental quality 32: 84–91.

  • Spencer, K. A. & D. Havranek. 1989. A new species of Agromyzidae (Diptera) from Venezuela. Florida Entomologist 72: 441–444.

    Article  Google Scholar 

  • ——— & G. C. Steyskal. 1986. Manual of the Agromyzidae (Diptera) of the United States. United States Department of Agriculture. Agriculture Handbook, USDA 638.

  • Sprague, L. C., E. W. Stroller, L. M. Wax & M. J. Horak. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Science 45: 192–197.

    CAS  Google Scholar 

  • Spreeth, M. H., M. M. Slabbert, J. A. De Ronde, E. Van Den Heever & A. Ndou. 2004. Screening of cowpea, bambara groundnut and Amaranthus germplasm for drought tolerance and testing of selected plant material in participation with targeted communities. WRC Report No. 944/1/04.

  • Srivastava, R. 2011. Nutritional quality of some cultivated and wild species of Amaranthus L. International Journal of Phamaceutical Science and Research 2: 3152–3156.

    CAS  Google Scholar 

  • Srivastava, R. & B. K. Roy. 2012. Cytogenetic studies: karyotypic and evolutionary aspects of some cultivated and wild species of Amaranthus L. International Journal of Innovations in Bio-Sciences 2: 154–156.

    Google Scholar 

  • Stallknecht, G. F. & J. R. Schulz-Schaeffer. 1993. Amaranth rediscovered. New crops. Wiley, New York: 211–218.

    Google Scholar 

  • Steckel, L. E. 2004. Pigweeds in Tennessee. Univeristy of Tennesse.

  • ———. 2007. The dioecious Amaranthus spp.: here to stay. Weed Technology 21: 567–570.

    Article  Google Scholar 

  • ———, C. L. Sprague, A. G. Hager, F. W. Simmons & G. A. Bollero. 2003. Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Science 51: 898–903.

  • ———, C. L. Sprague, E. W. Stoller & L. M. Wax. 2004. Temperature effects on germination of nine Amaranthus species. Weed Science 52: 217–221.

  • ———, C. L. Main, A. T. Ellis & T. C. Mueller. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technology 22: 119–123.

  • Steinau, A. N., D. Z. Skinner & M. Steinau. 2003. Mechanism of extreme genetic recombination in weedy Amaranthus hybrids. Weed Science 51: 696–701.

    Article  CAS  Google Scholar 

  • Stevens, O. A. 1924. Some effects of the first fall freeze. American Midland Naturalist 9: 14–17.

    Article  Google Scholar 

  • ———. 1932. The number and weight of seeds produced by weeds. American Journal of Botany 19: 784–794.

    Article  Google Scholar 

  • Stoller, E. W. & R. A. Myers. 1989. Response of soybeans (Glycine max) and four broadleaf weeds to reduced irradiance. Weed Science 37: 570–574.

    Google Scholar 

  • Suma, S. 1998. A brief study on the environmental physiology of Amaranthus spinosus L. Thesis, Doctorate, Bangalore University, Bangalore.

    Google Scholar 

  • Sun, H., D. Wiesenborn, K. Tostenson, J. Gillespie & P. Rayas-Duarte. 1997. Fractionation of squalene from amaranth seed oil. Journal of the American Oil Chemists’ Society 74: 413–418.

  • Swanton, C. J., J. Z. Huang, W. Deen, M. Tollenaar, A. Shrestha & H. Rahimian. 1999. Effects of temperature and photoperiod on the phenological development of Setaria viridis. Weed Science 47: 446–453.

    CAS  Google Scholar 

  • Sweat, J. K., M. J. Horak, D. E. Peterson, R. W. Lloyd & J. E. Boyer. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technology 12: 315–321.

    CAS  Google Scholar 

  • Szmedra, P. 1997. Banning 2, 4-D and the phenoxy herbicides: potential economic impact. Weed Science 45: 592–598.

    CAS  Google Scholar 

  • Takabayashi, M. & K. Nakayama. 1981. The seasonal change in seed dormancy of main upland weeds. Weed Research 26: 249–253.

    Google Scholar 

  • Takagi, F. 1933. Uber die Chromosomen-Zahlen bei einigen Amaranthus. Arten. Botanical Magazine 47: 556–557.

    Article  Google Scholar 

  • Tardif, F. J., I. Rajcan & M. Costea. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytologist 169: 251–264.

    Article  CAS  PubMed  Google Scholar 

  • Taylorson, R. B. & H. A. Borthwick. 1969. Light filtration by foliar canopies: significance for light-controlled weed seed germination. Weed Science 17: 48–51.

    Google Scholar 

  • ——— & S. B. Hendricks. 1969. Action of phytochrome during prechilling of Amaranthus retroflexus L. seeds. Plant Physiology 44: 821–825.

  • ——— & S. B. Hendricks. 1971. Changes in phytochrome expressed by germination of Amaranthus retroflexus L. seeds. Plant Physiology 47: 619–622.

  • ——— & S. B. Hendricks. 1973. Promotion of seed germination by cyanide. Plant Physiology 52: 23–27.

  • Teitz, A. Y., S. F. Gorski & M. B. McDonald. 1990. The dormancy of livid amaranth Amaranthus lividus L. seeds. Seed Science and Technology 18: 781–989.

    Google Scholar 

  • Telewski, F. W. & J. A. D. Zeevaart. 2002. The 120-years period for Dr. Beal’s seed viability experiment. American journal of Botany 89: 264–270.

    Google Scholar 

  • Teutonico, R. A. & D. Knorr. 1985. Amaranth: Composition, properties, and applications of a rediscovered food crop. Food technology 39: 49–60.

    CAS  Google Scholar 

  • Thomas, W. E., I. C. Burke, J. F. Spears & J. W. Wilcut. 2006. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Science 54: 316–320.

    Article  CAS  Google Scholar 

  • Thompson, K. 1987. Seeds and seedbank. New Phytologist 106: 23–34.

    Article  Google Scholar 

  • Thompson, T. 2001. Case problem: Question regarding the acceptability of buckwheat, amaranth, quinoa, and outs from a patient with celiac disease. Journal of the American Dietetic Association 101: 586–587.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, K. & J. P. Grime. 1983. A comparative study of germination in response to diurnally-fluctuating temperatures. Journal of Applied Ecology 20: 141–156.

    Article  Google Scholar 

  • Tisler, A. M. 1990. Feeding in the pigweed flea beetle. Disonycha glabrata Fab. (Coleoptera: Chrysomelidae), on Amaranthus retroflexus. Virginia Journal of Science 41: 243–245.

    Google Scholar 

  • Torres, P. C. B., A. A. Garcia, R. P. Aviles, L. R. Hernandez & J. F. L. Olguin. 2011. Entomofaunastic study in of the cultivation of Amaranth (Amaranthus hypochondriacus L.) in Puebla, Mexico, Revesta Mexicana de Ciencias agricolas 2: 359–371.

    Google Scholar 

  • Tranel, P. J. & T. R. Wright. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science 50: 700–712.

    Article  CAS  Google Scholar 

  • ———, W. Jiang, W. L. Patzoldt & T. R. Wright. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Science 52: 236–241.

  • Trucco, F., M. R. Jeschke, A. L. Rayburn & P. J. Tranel. 2005a. Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity 94: 64–70.

    Article  CAS  PubMed  Google Scholar 

  • ———, M. R. Jeschke, A. L. Rayburn & P. J. Tranel. 2005b. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Science 53: 46–54.

  • ———, D. Zheng, A. J. Woodyard, J. R. Walter, T. C. Tatum, A. L. Rayburn & P. J. Tranel. 2007. Nonhybrid progeny from crosses of dioecious amaranths: implications for gene-flow research. Weed Science 55: 119–122.

  • ———, T. Tatum, A. L. Rayburn & P. J. Tranel. 2009. Out of the swamp: Unidirectional hybridization with weedy species may explain the prevalence of Amaranthus tuberculatus as a weed. New Phytologist 184: 819–827.

  • Uphof, J. C. 1968. Dictionary of economic plants. Cramer: New York, pp. 545.

    Google Scholar 

  • USDA, ARS. 1999. National Genetic Resources Program. Germplasm Resources.

    Google Scholar 

  • USDA, NRCS. 2010. The plants database (http://plants.usda.gov). National plant data center, Baton Rouge: 70,874–4490.

    Google Scholar 

  • Uusikua, N. P., A. Oelofsea, K. G. Duodub, M. J. Besterc & M. Faberd. 2010. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. In: Journal of Food Composition and Analysis 23: 499–509.

    Google Scholar 

  • Vangessel, M. J. & K. A. Renner. 1990. Redroot pigweed (Amaranthus retroflexus) and barnyard grass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Science 38: 338–343.

    Google Scholar 

  • Velu, G. & A. M. Ali. 1995. Allelopathic effect of pigweed and horse purslane on Boerhaavia diffusa. Crop Research 10: 103–106.

    Google Scholar 

  • Vencill, W. K., T. L. Grey, A. S. Culpepper, C. Gaines & R. Westra. 2008. Herbicide-resistance in the Amaranthaceae. Journal of Plant Diseases and Protection 41–44.

  • Vietmeyer, N. 1978. Poor people’s crops. US Agency for International Development (USA) 1: 12.

  • Vigueira, C. C., K. M. Olsen & A. L. Caicedo. 2013. The red queen in the corn: Agricultural weeds as models of rapid adaptive evolution. Heredity 110: 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, G. B. & H. A. Cordo. 1976. Recent South American field studies of prospective biocontrol agents of weeds. In Proceedings of the Research Planning Conference on the Aquatic Plant Control Program, Charleston pp. 36–55.

  • Walter, J. & C. Dobes. 2004. Morphological characters, geographic distribution and ecology of neophytic Amaranthus blitum L. subsp. emarginatus in Austria. Annals of the Natural History Museum, Vienna, 105(B). Vienna, Austria: Annals of the Natural History Museum 645–672.

  • Wang, J. L., J. J. Long, T. E. Hotchkiss & J. O. Berry. 1993. C4 photosynthetic gene expression in light- and dark-grown amaranth cotyledons. Plant Physiology 102: 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Y. L. Meng, H. Ishikawa, T. Hibino, Y. Tanaka, N. Nii & T. Takabe. 1999. Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant and Cell Physiology 40: 668–674.

    Article  CAS  Google Scholar 

  • Ward, D. E. & R. W. Spellenberg. 1986. Chromosome counts of angiosperms of western North America. Phytologia 61: 119–125.

    Google Scholar 

  • Washitani, I. 1985. Field fate of Amaranthus patulus seeds subjected to leaf-canopy inhibition of germination. Oecologia 66: 338–342.

    Article  PubMed  Google Scholar 

  • ——— & A. Takenaka. 1984. Germination responses of a non-dormant seed population of Amaranthus patulus Bertol. to constant temperatures in the sub-optimal range. Plant Cell and Environment 47: 353–358.

  • Wassom, J. J. & P. J. Tranel. 2005. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. Journal of Heredity 96: 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T., Y. Murata & M. Osaki. 2009. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils. Communications in soil science and plant analysis 40: 3158–3169.

    Article  CAS  Google Scholar 

  • Waterhouse, D. F. 1994. Biological control of weeds: Southeast Asian Prospects. Australian Centre for International Agricultural Research 125.

  • Weaver, S. E. 1984. Differential growth and competitive ability of Amaranthus retroflexus, A. powellii and A. hybridus. Canadian Journal of Plant Science 64: 715–724.

    Article  Google Scholar 

  • ——— & E. L. McWilliams. 1980. The biology of Canadian weeds. 44. Amaranthus retroflexus L, Amaranthus powelli S. Wats and Amaranthus hybridus L. Canadian Journal of Plant Science 60: 1215–1234.

  • ——— & A. G. Thomas. 1986. Germination responses to temperature of atrazine-resistant and -susceptible biotypes of two pigweed (Amaranthus) species. Weed Science 34: 865–870.

  • Webb, D. M., C. W. Smith & J. Schulz-Schaeffer. 1987. Amaranth seedling emergence as affected by seeding depth and temperature on a thermogradient plate. Agronomy Journal 79: 23–26.

    Article  Google Scholar 

  • Webster, T. M. 2009. Weed survey–Southern states. Proceedings of the Southern Weed Science Society 62: 509–524.

    Google Scholar 

  • ——— & L. M. Sosnoskie. 2010. Loss of glyphosate efficacy: A changing weed spectrum in Georgia cotton. Weed Science 58: 73–79.

  • Wetzel, D. K., M. J. Horak & D. Z. Skinner. 1999a. Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Science 47: 518–523.

    CAS  Google Scholar 

  • ———, ———, ——— & P. A. Kulakow. 1999b. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis. Weed Science 47: 538–543.

    CAS  Google Scholar 

  • Whitehead, W. F. & B. P. Singh. 1993. Population density and soil pH effects on vegetable amaranth production. In: Janick, J. and Simon, J.E. (eds.), New crops. Wiley, New York: 562–564.

    Google Scholar 

  • Wiersema, J. H. & B. Leon. 1999. World economic plants CRC Press: Boca Raton. pp. 32–34.

  • Wiese, A. M. & L. K. Binning. 1987. Calculating the threshold temperature of development for weeds. Weed Science 35: 177–179.

    Google Scholar 

  • Wiese, A. E. & R. G. Davis. 1967. Weed emergence from two soils at various moistures, temperatures, and depths. Weeds 15: 118–121.

    Article  Google Scholar 

  • Williams, J. T. & D. Brenner. 1995. Grain amaranth (Amaranthus species). Cereals and pseudocereals.

    Google Scholar 

  • Williams, R., L. Peal & P. Bartholomew. 2005. Seed hydration/dehydration in an allelochemical (coumarin) alters germination and seedling growth. Allelopathy Journal 15: 183–196.

    Google Scholar 

  • Wills, R. B. H., A. W. K. Wong, F. M. Scriven & H. Greenfield. 1984. Nutrient composition of Chinese vegetables. Journal of Agricultural and Food Chemistry 32: 413–416.

    Article  CAS  Google Scholar 

  • Wise, A. M., T. L. Grey, E. P. Prostko, W. K. Vencill & T. M. Webster. 2009. Establishing the geographic distribution level of acetolactate synthase resistance of palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technology 23: 214–220.

    Article  CAS  Google Scholar 

  • Woolley, J. T. & E. Stoller. 1978. Light penetration and light-induced seed germination in soil. Plant Physiology 61: 597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S. W., H. D. Coble, C. D. Raper & T. W. Rufty. 1999. Comparative responses of soybean (Glycine max), sickle pod (Senna obtusifolia), and palmer amaranth (Amaranthus palmeri) to root zone and aerial temperature. Weed Science 47: 167–174.

    CAS  Google Scholar 

  • Yan, X., L. Zhenyu, W. P. Gregg & L. Dianmo. 2001. Invasive species in China–an overview. Biodiversity and Conservation 10: 1317–1341.

    Article  Google Scholar 

  • York, A. C., J. R. Whitaker, A. S. Culpepper & C. L. Main. 2007. Glyphosate-resistant palmer amaranth in the south eastern United States. Proceedings of the Southern Weed Science Society 60: 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Rashid.

Additional information

Web-Links

http://www.theplantlist.org/1.1/browse/A/Amaranthaceae/Amaranthus/ (Accessed on November 20, 2016).

Appendix

Appendix

Table 1 Accepted plant names of the species for the genus Amaranthus with their synonyms
Table 2 Chromosome number(s) of various Amaranthus species
Table 3 Effect of temperature on seed germination of Amaranthus species
Table 4 Effect of various environmental parameters on seed germination of Amaranthus species
Table 5 Allelopathic effect of Amaranthus species on other plants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assad, R., Reshi, Z.A., Jan, S. et al. Biology of Amaranths. Bot. Rev. 83, 382–436 (2017). https://doi.org/10.1007/s12229-017-9194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-017-9194-1

Keywords

Navigation