Skip to main content
Log in

Liouville metric of star-scale invariant fields: tails and Weyl scaling

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the Liouville metric associated to an approximation of a log-correlated Gaussian field with short range correlation. We show that below a parameter \(\gamma _c >0\), the left–right length of rectangles for the Riemannian metric \(e^{\gamma \phi _{0,n}} ds^2\) with various aspect ratio is concentrated with quasi-lognormal tails, that the renormalized metric is tight when \(\gamma < \min ( \gamma _c, 0.4)\) and that subsequential limits are consistent with the Weyl scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  2. Allez, R., Rhodes, R., Vargas, V.: Lognormal \(\star \)-scale invariant random measures. Probab. Theory Relat. Fields 155(3–4), 751–788 (2013)

    Article  MathSciNet  Google Scholar 

  3. Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation. University Lecture Series, vol. 68. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  4. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22(27), 12 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Biermé, H., Durieu, O., Wang, Y.: Generalized random fields and Lévy’s continuity theorem on the space of tempered distributions (2017). arXiv:1706.09326

  6. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  7. Da Prato, G.: An Introduction to Infinite-Dimensional Analysis. Universitext. Springer, Berlin (2006)

    Book  Google Scholar 

  8. Ding, J., Dunlap, A.: Liouville first-passage percolation: subsequential scaling limits at high temperature. Ann. Probab. 47(2), 690–742 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ding, J., Goswami, S.: Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Commun. Pure Appl. Math. (2018) (to appear). arXiv:1610.09998v4

  10. Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Commun. Math. Phys. (2018) (to appear). arXiv:1807.01072

  11. Ding, J., Zeitouni, O., Zhang, F.: Heat kernel for Liouville Brownian motion and Liouville graph distance. Commun. Math. Phys. (2018) (to appear). arXiv:1807.00422

  12. Ding, J., Zeitouni, O., Zhang, F.: On the Liouville heat kernel for k-coarse MBRW. Electron. J. Probab. 23(62), 1–20 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Ding, J., Zhang, F.: Liouville first passage percolation: geodesic dimension is strictly larger than 1 at high temperatures. Probab. Theory Relat. Fields (2016) (to appear). arXiv:1711.01360

  14. Ding, J., Zhang, F.: Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields. Probab. Theory Relat. Fields 171(3–4), 1157–1188 (2018)

    Article  MathSciNet  Google Scholar 

  15. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  MathSciNet  Google Scholar 

  16. Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12(4), 999–1040 (1984)

    Article  MathSciNet  Google Scholar 

  17. Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. École d’Été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, vol. 480, pp. 1–96 (1975)

  18. Freitag, E., Busam, R.: Complex Analysis. Universitext, 2nd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian, English edn. Modern Birkhäuser Classics. Birkhäuser Boston Inc, Boston (2007)

  20. Junnila, J., Saksman, E., Webb, C.: Decompositions of log-correlated fields with applications (2018). arXiv:1808.06838

  21. Kahane, J.P.: Sur le chaos multiplicatif. Ann. Sci. Math. Qué. 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Le Gall, J.F.: The topological structure of scaling limits of large planar maps. Invent. Math. 169(3), 621–670 (2007)

    Article  MathSciNet  Google Scholar 

  23. Le Gall, J.F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    Article  MathSciNet  Google Scholar 

  24. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    Article  MathSciNet  Google Scholar 

  25. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric (2015). arXiv:1507.00719

  26. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding (2016). arXiv:1605.03563

  27. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined (2016). arXiv:1608.05391

  28. Miller, J., Sheffield, S.: Quantum Loewner evolution. Duke Math. J. 165(17), 3241–3378 (2016)

    Article  MathSciNet  Google Scholar 

  29. Pitt, L.D.: Positively correlated normal variables are associated. Ann. Probab. 10(2), 496–499 (1982)

    Article  MathSciNet  Google Scholar 

  30. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MathSciNet  Google Scholar 

  31. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    Article  MathSciNet  Google Scholar 

  32. Tassion, V.: Crossing probabilities for Voronoi percolation. Ann Probab. 44(5), 3385–3398 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referee for many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Falconet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Julien Dubédat is partially supported by NSF DMS 1308476 and NSF DMS 1512853.

Appendix

Appendix

1.1 Tail estimates for the supremum of \(\phi _{0,n}\)

We derive in the following lemma some tail estimates for the field \(\phi _{0,n}\). The tail estimates are obtained by controlling a discretization of \(\phi _{0,n}\) (by union bound and Gaussian tail estimates) and its gradient.

Lemma 11

The supremum of the field \(\phi _{0,n}\) satisfies the following tails estimates

$$\begin{aligned} {\mathbb {P}}\left( \underset{[0,1]^2}{\sup } \left|\phi _{0,n}\right| \ge \alpha ( n + C\sqrt{n}) \right) \le C 4^n e^{- \frac{\alpha ^2}{\log 4} n} \end{aligned}$$
(39)

as well as

$$\begin{aligned} {\mathbb {P}}\left( \underset{[0,1]^2}{\sup } \left|\phi _{0,n}\right| \ge n \log 4 + C \sqrt{n} + C s \right) \le C e^{- s}. \end{aligned}$$
(40)

Proof

First we bound a discretization of the field \(\phi _{0,n}\). Since the variance of \(\phi _{0,n}(x)\) is equal to \((n+1) \log 2\), by union bound and classical Gaussian tail estimates we have \({\mathbb {P}} ( \max _{[0,1]^2 \cap 2^{-n} {\mathbb {Z}}^2} \left|\phi _{0,n}(x)\right| \ge x ) \le 4^n e^{- \frac{ x^2 }{(n+1)\log 4}}\) hence by introducing \(x_n \,{:=}\, \sqrt{n+1} \sqrt{n}\) we get

$$\begin{aligned} {\mathbb {P}} \left( \underset{x \in [0,1]^2 \cap 2^{-n} {\mathbb {Z}}^2}{\max } \left|\phi _{0,n}(x)\right| \ge \alpha x_n \right) \le 4^n e^{- \frac{ \alpha ^2}{\log 4} n}. \end{aligned}$$
(41)

Now we want to bound \(\sup _{[0,1]^2} \left|\phi _{0,n}(x)\right|\) for which we want an equivalent of the bound (41). By Fernique’s theorem, we have a tail estimate for the gradient of \(\phi _{0}\) i.e. there exists some \(C > 0\) so that for every \(x > 0\), \({\mathbb {P}} ( \sup _{[0,1]^2} \left|\nabla \phi _0\right| \ge x ) \le C e^{-x^2/2C}\). Then, by scaling, for any dyadic cube \(P \in {\mathscr {P}}_k\), \({\mathbb {P}} ( \sup _{P} \left|\nabla \phi _k\right| \ge 2^k x ) \le C e^{-x^2/2C}\) thus, by union bound \({\mathbb {P}} ( \sup _{[0,1]^2} \left|\nabla \phi _k\right| \ge 2^k x ) \le C 4^k e^{-x^2/2C}\). We can now work out the gradient field \(\nabla \phi _{0,n}\): \({\mathbb {P}} ( \sup _{[0,1]^2} \left|\nabla \phi _{0,n}\right| \ge 2^{n+1} x ) \le {\mathbb {P}} (\sum _{k=0}^n \sup _{[0,1]^2}\left|\nabla \phi _{k}\right| \ge \sum _{k=0}^n 2^{k} x ) \le C 4^{n} e^{-x^2 / 2 C}\) hence \({\mathbb {P}} ( 2^{-n} \sup _{[0,1]^2}\left|\nabla \phi _{0,n}\right| \ge x ) \le C 4^n e^{-x^2/2C}\). This inequality can be rewritten by introducing \(y_n \,{:=}\, C \sqrt{n}\) as:

$$\begin{aligned} {\mathbb {P}} \left( 2^{-n} \sup _{[0,1]^2} \left|\nabla \phi _{0,n}\right| \ge \alpha y_n \right) \le C 4^n e^{-\frac{\alpha ^2}{\log 4}n}. \end{aligned}$$
(42)

Using the discrete bound (41) and the gradient one (42), since

$$\begin{aligned} \sup _{[0,1]^2}\left|\phi _{0,n}\right| \le \max _{[0,1]^2 \cap 2^{-n} {\mathbb {Z}}^2} \left|\phi _{0,n}\right| + 2^{-n} \sup _{[0,1]^2} \left|\nabla \phi _{0,n}\right|, \end{aligned}$$

we get the result (39) by union bound. Indeed, with \(z_n \,{:=}\, x_n + y_n\). \({\mathbb {P}} ( \underset{[0,1]^2}{\sup } \left|\phi _{0,n}\right| \ge \alpha z_n ) \le {\mathbb {P}}( X_n \ge \alpha x_n ) + {\mathbb {P}} ( Y_n \ge \alpha Y_n ) \le C 4^n e^{- \frac{\alpha ^2}{\log 4} n}\). Taking \(\alpha = \log 4 \sqrt{1+\frac{s}{n \log 4}} \le \log 4+\frac{s}{n}\) gives the second part (40).

The following lemma is a corollary of the previous one: using the tail estimates we control exponential moments.

Lemma 12

We have the following upper bounds for the exponential moments of the field \(\phi _{0,n}\): for \(\gamma < 2\) and \(n \ge 0\), \({\mathbb {E}} \left( e^{ \gamma \sup _{[0,1]^2} \left|\phi _{0,n}\right|} \right) \le C 4^{ \gamma n (1 + o(1)) }\), where o(1) is of the form \(O(n^{-1/2})\).

Proof

Fix \(0< \gamma < 2\). We use the bound (39) as follows. By introducing \(s_n \,{:=}\, n + C \sqrt{n}\) we have, by using the elementary bound \({\mathbb {E}}(e^{\gamma X}) \le e^{\gamma x} + \int _{x}^{\infty } \gamma e^{\gamma t} {\mathbb {P}}(X \ge t) dt\) and for \(\alpha \) to be specified:

$$\begin{aligned} {\mathbb {E}} \left( e^{\gamma \underset{[0,1]^2}{\sup } \left|\phi _{0,n}\right|} \right) \le e^{\gamma \alpha s_n} + \gamma \int _{\alpha s_n}^{\infty } e^{\gamma t} {\mathbb {P}} \left( \underset{[0,1]^2}{\sup } \left|\phi _{0,n}\right| \ge t \right) dt. \end{aligned}$$

Setting \(t = s_nu\), \(\int _{\alpha s_n}^{\infty } e^{\gamma t} {\mathbb {P}} ( \sup _{[0,1]^2} \left|\phi _{0,n}\right| \ge t ) dt = s_n \int _{\alpha }^{\infty } e^{\gamma s_n u} {\mathbb {P}} ( \sup _{[0,1]^2} \left|\phi _{0,n}\right| \ge s_n u) du\) and by using the bound (39)

$$\begin{aligned} \int _{\alpha }^{\infty } e^{\gamma s_n u} {\mathbb {P}} \left( \sup _{[0,1]^2} \left|\phi _{0,n}\right| \ge s_n u \right) du \le C 4^n \int _{\alpha }^{\infty } e^{\gamma s_n u} e^{-\frac{u^2}{\log 4}n} du. \end{aligned}$$

By introducing \(r_n \,{:=}\, n^{-1} s_n\), by a change of variables we obtain:

$$\begin{aligned} \int _{\alpha }^{\infty } e^{\gamma s_n u} e^{-\frac{u^2}{\log 4}n} du \le 4^{ \frac{\gamma ^2 r_n^2}{4} n} \int _{\alpha - \gamma r_n \frac{\log 4 }{2}}^{\infty } e^{- \frac{n}{\log 4} u^2} du. \end{aligned}$$

Taking \(\alpha \,{:=}\, r_n \log 4\), the integral in the right-hand side becomes

$$\begin{aligned} \int _{\alpha - \gamma r_n \frac{\log 4 }{2}}^{\infty } e^{- \frac{n}{\log 4} u^2} du = \int _{\left( 1 - \gamma /2 \right) r_n \log 4 }^{\infty } e^{- \frac{n}{\log 4} u^2} du \le \frac{4^{-n \left( 1- \frac{\gamma }{2} \right) ^2 r_n^2 }}{\left( 2-\gamma \right) n r_n}, \end{aligned}$$

by using the inequality \(\int _a^{\infty } e^{-b x^2} dx \le (2ab)^{-1} e^{-ba^2}\) valid for \(a> 0\) and \(b >0\). Gathering the pieces we get \({\mathbb {E}} ( e^{\gamma \sup _{[0,1]^2} \left|\phi _{0,n}\right|} ) \le (1 + C \frac{\gamma }{2-\gamma } )4^{\gamma r_n^2 n}\) hence the result.

We add here a Lemma which is in the same vein as the previous one.

Lemma 13

Suppose that we have the following tail estimate on a sequence of positive random variables \((X_k)_{k \ge 0}\): for \(k \ge 0\) and \(s > 2\),

$$\begin{aligned} {\mathbb {P}}\left( X_k \ge e^{s} \right) \le 4^k e^{- c \frac{s^2}{\log s}}. \end{aligned}$$

Then, we have the following moment estimate: there exists \(C >0\) depending only on c such that for k large,

$$\begin{aligned} {\mathbb {E}}\left( X_k \right) \le e^{C \sqrt{k \log k}}. \end{aligned}$$

Proof

Fix \(x_k > 2\) to be specified. Note that

$$\begin{aligned} {\mathbb {E}}(X_k) - e^{x_k}\le & {} \int _{e^{x_k}}^{\infty } {\mathbb {P}}\left( X_k \ge x \right) dx = \int _{x_k}^{\infty } {\mathbb {P}}\left( X_k \ge e^s \right) e^s ds \\\le & {} 4^k \int _{x_k}^{\infty } e^{-c \frac{s^2}{\log s}} e^s ds \le 4^k e^{x_k} \int _{x_k}^{\infty } e^{-c\frac{s^2}{\log x_k}} ds. \end{aligned}$$

By using the bound \(\int _{a}^{\infty } e^{-bx^2} dx \le (2ab)^{-1} e^{-b a^2}\), we get \({\mathbb {E}}(X_k) \le e^{x_k} + 4^k e^{x_k} (2 x_k \frac{c}{\log x_k})^{-1} e^{-c \frac{x_k^2}{\log x_k}}\). Taking \(x_k\) such that \(k \log 4 = c \frac{x_k^2}{\log x_k}\) gives \(\log k \sim 2 \log x_k\) and \(x_k \sim C \sqrt{k \log k}\).

1.2 Upper bound for F(s)

In this subsection, we derive two lemmas that allow us to bound the term F(s) which appears in the proof of Proposition 10. The first one corresponds to \(a_{t_s}\), the second one to \(\int _{0}^{\infty } a_t dt\).

Lemma 14

If \(a,b,c >0\) and \(\alpha \in (0,1/2)\) then the function \(f_s(t) \,{:=}\, -at + b t^{1/2 + \alpha } + c s \sqrt{t}\) in increasing on \([0,t_s]\), decreasing on \([t_s,\infty ]\) for some \(t_s > 0\) which satisfy \(a t_s^{1/2} = \frac{1}{2} cs + O(s^{2\alpha })\). In particular, we have: \(\exp (f_s(t_s)) \le e^{ \frac{c^2 s^2}{4 a} + C s^{1+ 2 \alpha } }\).

Proof

First, notice that \(f_s'(t) = -a + (\frac{1}{2}+\alpha ) b t^{-1/2+\alpha } + \frac{1}{2} cs t^{-1/2}\). Since \(f_s'(t_s) = 0\) we obtain \(a = (\frac{1}{2} + \alpha ) b t_s^{-1/2 + \alpha } + \frac{1}{2} c s t_s^{-1/2} \) which we write:

$$\begin{aligned} a t_s^{1/2} = \frac{cs}{2} + \left( \frac{1}{2} + \alpha \right) b t_s^{\alpha }. \end{aligned}$$
(43)

Thus \(a t_s^{1/2} \ge cs/2\). In particular, \(\lim _{s \rightarrow \infty } t_s = + \infty \). Using (43), we obtain \(a t_s^{1/2} \sim _{s \rightarrow \infty } \frac{1}{2}cs\). Using again (43), we have \(a t_s^{1/2} = \frac{1}{2} cs + O(s^{2\alpha })\). Using again (43) we conclude by noticing that: \(f_s(t_s) = -a t_s + b t_s^{1/2 + \alpha } + c s t_s^{1/2} = a t_s - 2b \alpha t_s^{1/2+\alpha }\).

Lemma 15

Let \(\alpha , a,b >0\) with \(\alpha < 1/2\). For every \(s > 0\) the following inequality holds

$$\begin{aligned} \int _0^{\infty } e^{-t + a t^{1/2+\alpha } + b s \sqrt{t}} dt \le C_{\alpha ,a} (2 + bs) e^{\frac{(bs)^2}{4}} e^{C_{\alpha } (bs)^{1+2\alpha }}, \end{aligned}$$

where \(C_{\alpha ,a} < \infty \) just depends on a and \(C_{\alpha }\) just depends on \(\alpha \).

Proof

By writing \(-t + bs \sqrt{t} = \frac{(bs)^2}{4} - (\sqrt{t} - \frac{bs}{2})^2 \) and the change of variable \(u = \sqrt{t}\),

$$\begin{aligned} \int _0^{\infty } e^{-t + a t^{1/2+\alpha } + b s \sqrt{t}} dt = e^{\frac{(bs)^2}{4}} \int _0^{\infty } e^{-\left( u - \frac{bs}{2}\right) ^2 + a u^{1+2\alpha }} 2 u du . \end{aligned}$$

Now, by the change of variables \(v = u - bs/2\), we get

$$\begin{aligned} \int _0^{\infty } e^{-\left( u - \frac{bs}{2}\right) ^2 + a u^{1+2\alpha }} 2 u du = \int _{-\frac{bs}{2}}^{\infty } e^{-v^2 + a \left( v+ \frac{bs}{2}\right) ^{1+2\alpha }} (2v + bs) dv. \end{aligned}$$

Finally, by Jensen’s inequality, \((v + \frac{bs}{2})^{1+2\alpha } \le C_{\alpha } (\left|v\right|^{1+2\alpha } + (bs)^{1+2\alpha })\) thus

$$\begin{aligned}&\int _{-\frac{bs}{2}}^{\infty } e^{-v^2 + a \left( v+ \frac{bs}{2}\right) ^{1+2\alpha }} (2v + bs) dv \\&\quad \le e^{C_{\alpha } a (bs)^{1+2\alpha }} \int _{-\frac{bs}{2}}^{\infty } e^{-v^2 + C_{\alpha } a |v|^{1+2\alpha }} (2v + bs) dv \\&\quad \le e^{C_{\alpha } a (bs)^{1+2\alpha }} (2 + bs) \int _{-\infty }^{\infty } e^{-v^2 + C_{\alpha } a |v|^{1+2\alpha }} \left( 1+|v|\right) dv. \end{aligned}$$

Now, we bound F(s). Recall first that \(F(s) \le 2 a_{t_s} + \int _{0}^{\infty } a_{t} dt\) where \(a_t = \exp (f_s(t))\), \(f_s(t) \,{:=}\, - t(1-\lambda ) \log 2 + C t^{1/2+ \alpha } + \beta s \sqrt{t}\), \(\lambda \,{:=}\, (1+a_{\varepsilon }) \gamma \), \(\alpha \,{:=}\, \frac{\delta }{2}\) and \(\beta \,{:=}\, \frac{\gamma }{2} \sqrt{\log 4}\). By Lemma 14, \(a_{t_s} \le e^{\frac{\beta ^2 s^2}{4 (1-\lambda ) \log 2} + C s^{1+2\alpha }} = e^{\frac{\gamma ^2 \log 4 s^2}{16 (1-(1+a_{\varepsilon })\gamma ) \log 2} + C s^{1+\delta }} = e^{\frac{\gamma ^2 s^2}{8(1-(1+a_{\varepsilon })\gamma )} + Cs^{1+ \delta }}\). By the change of variable \(u = t (1-\lambda )\log 2\) and Lemma 15, we obtain the integral bound \(\int _0^{\infty } a_t dt \le C e^{\frac{\gamma ^2 s^2}{8(1-(1+a_{\varepsilon })\gamma )}} e^{C s^{1+ \delta }}\). Altogether we get \(F(s) \le C e^{\frac{\gamma ^2 s^2}{8(1-(1+a_{\varepsilon })\gamma )}} e^{C s^{1+\delta }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubédat, J., Falconet, H. Liouville metric of star-scale invariant fields: tails and Weyl scaling. Probab. Theory Relat. Fields 176, 293–352 (2020). https://doi.org/10.1007/s00440-019-00919-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00919-z

Keywords

Mathematics Subject Classification

Navigation