Skip to main content
Log in

Some features of the nonlocal correlation and geometric phase of the quantum system in two-mode nondegenerate entangled states

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We propose a quantum two-level system interacting with a two-mode nondegenerate entangled states (TMNESs). The dynamical properties of entropy squeezing component is investigated based on atomic density matrix in the absence and presence of classical field effect. Moreover, the dynamical properties of the nonlocal correlation between the atom and TMNESs are studied and compared with geometric phase. We examine the influence of the initial interaction conditions and classical field on the evolution of nonlocal correlation, linear entropy and geometric phase. Furthermore, we discuss the link between the geometric phase, field purity and nonlocal correlation during the time dynamics. Finally, the results clarified that a geometric phase and entanglement are strongly affected by the classical field and detuning parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Sangouard, C. Simon, N. Gisin, J. Laurat, R. Tualle-Brouri, P. Grangier, J. Opt. Soc. Am. B 27, 137 (2010)

    Google Scholar 

  2. V. Bužek, A.V. Barranco, P.L. Knight, Phys. Rev. 45, 6570 (1974)

    Google Scholar 

  3. V. Donodov, I.A. Malkin, V.I. Manko, Physica 72, 597 (1992)

    Google Scholar 

  4. B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13 (1986)

    CAS  PubMed  Google Scholar 

  5. B.C. Sanders, Phys. Rev. A 45, 6811 (1992)

    CAS  PubMed  Google Scholar 

  6. B. Yurke, D. Stoler, Phys. Rev. 35, 4846 (1987)

    CAS  Google Scholar 

  7. S.H. Bukhari et al., Opt. Int. J. Light Electron Opt. 125, 3788 (2014)

    Google Scholar 

  8. T. Liu, Q.-P. Su, S.-J. Xiong, J.-M. Liu, C.-P. Yang, F. Nori, Science 6, 32004 (2016)

    CAS  Google Scholar 

  9. M.K. Tavassoly, Phys. Scr. 90, 015101 (2015)

    Google Scholar 

  10. R.L. de Matos Filho, W. Vogel, Phys. Rev. 54, 4560 (1996)

    Google Scholar 

  11. S. Abdel-Khalek, Y.S. El-Saman, I. Mechai, M. Abdel-Aty, Braz. J. Phys. 48, 9 (2018)

    CAS  Google Scholar 

  12. M. Abdel-Aty, S. Abdel-Khalek, A.S.-F. Obada, Opt. Rev. 7, 499 (2000)

    CAS  Google Scholar 

  13. G.S. Agarwal, A. Biswas, J. Opt. B Quantum Semiclass. Opt. 7, 350 (2005)

    Google Scholar 

  14. S. Abdel-Khalek, Opt. Quantum Electr. 46, 1055 (2014)

    Google Scholar 

  15. M.S. Abdalla, E. Khalil, A.-S.F. Obada, IL Nuovo Cim. B 12, 1509 (2010)

    Google Scholar 

  16. A. Karimi, M.K. Tavassoly, Chin. Phys. B 25, 040303 (2016)

    Google Scholar 

  17. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Google Scholar 

  18. F.W. Cummings, Phys. Rev. 140, 1051 (1965)

    Google Scholar 

  19. B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993)

    CAS  Google Scholar 

  20. V. Hussin, L.M. Nieto, J. Math. Phys. 46, 122102 (2005)

    Google Scholar 

  21. A. Joshi, S.V. Lawande, Phys. Rev. A 48, 2276 (1993)

    CAS  PubMed  Google Scholar 

  22. W.H. Zurek, Phys. Today 44, 36 (1991)

    Google Scholar 

  23. R. Omnes, The Interpretation of Quantum Mechanics (Princeton University Press, Cambridge, 1994)

    Google Scholar 

  24. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Google Scholar 

  25. S.L. Braunstein, Quantum Computing: Where Do We Want to Go Tomorrow? (Wiley, New York, 1999)

    Google Scholar 

  26. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000)

    Google Scholar 

  27. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    CAS  PubMed  Google Scholar 

  28. C.A. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, A. Peres, Phys. Rev. A 56, 1163 (1997)

    CAS  Google Scholar 

  29. S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)

    Google Scholar 

  30. M.V. Berry, Proc. R. Soc. Lond. A 329, 45 (1984)

    Google Scholar 

  31. B. Simon, Holonomy. Phys. Rev. Lett. 51, 2167 (1983)

    Google Scholar 

  32. B.K. Kendrick, J. Phys. Chem. A 107, 6739 (2003)

    CAS  Google Scholar 

  33. A.K. Pati, A. Banerjee, Phys. Rev. A 49, 5131 (1994)

    PubMed  Google Scholar 

  34. D.-B. Yang, Y. Chen, F.-L. Zhang, J.-L. Chen, J. Phys. B 44, 7 (2011)

    Google Scholar 

  35. S. Abdel-Khalek, Y.S. El-Saman, M. Abdel-Aty, Opt. Commun. 283, 1826 (2010)

    CAS  Google Scholar 

  36. E. Sjoqvist, Int. J. Quantum Chem. 115, 1311 (2015)

    Google Scholar 

  37. S. Abdel-Khalek, K. Berrada, Solid State Commun. 290, 31–36 (2019)

    CAS  Google Scholar 

  38. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  39. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)

    Google Scholar 

  40. K. Shiokawa, J. Math. Chem. 45, 175 (2009)

    CAS  Google Scholar 

  41. S. Alkhateeb, S. Abdel-Khalek, K. Berrada, E.M.A. Hilal, Results Phys. 6, 407 (2016)

    Google Scholar 

  42. A.F.A. Naim, J.Y. Khan, S. Abdel-Khalek, E. M. Khalil. Microelectron. J. 86, 15–21 (2019)

    Google Scholar 

  43. A.F. Al Naim, J.Y. Khan, E.M. Khalil, S. Abdel-Khalek, J. Russ. Laser Res. 40, 20 (2019)

    Google Scholar 

  44. S.J.D. Phoenix, P.L. Knight, Phys. Rev. A 44, 6023 (1991)

    CAS  PubMed  Google Scholar 

  45. S.J.D. Phoenix, P.L. Knight, Phys. Rev. Lett. 66, 2833 (1991)

    CAS  PubMed  Google Scholar 

  46. E.M. Khalil, S. Abdel-Khalek, S. Al-Awfi, J. Russ. Laser Res. 39, 505 (2018)

    Google Scholar 

  47. H.S. Alqannas, S. Abdel-Khalek, Opt. Laser Technol. 111, 523 (2019)

    CAS  Google Scholar 

  48. T.M. El-Shahat, S. Abdel-Khalek, M. Abdel-Aty, A.S.F. Obada, J. Mod. Opt. 50, 2013 (2003)

    CAS  Google Scholar 

  49. T.M. El-Shahat, S. Abdel-Khalek, A.S.F. Obada, Chaos Solitons Fractals 26, 1293 (2005)

    CAS  Google Scholar 

  50. J. Sanchez-Ruiz, Phys. Lett. A 226, 7 (1997)

    CAS  Google Scholar 

  51. M.F. Fang, P. Zhou, S. Swain, J. Mod. Opt. 47, 1043 (2000)

    CAS  Google Scholar 

  52. S. Alkhateeb, E.M. Khalil, J. Russ. Laser Res. 39, 20 (2018)

    Google Scholar 

  53. S.Y. Atwasarhan, Appl. Math. Nonlinear Sci. 2, 259 (2017)

    Google Scholar 

Download references

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G: 160-363-1439. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhateeb, S.A., Abdel-Khalek, S. Some features of the nonlocal correlation and geometric phase of the quantum system in two-mode nondegenerate entangled states. J Math Chem 58, 939–949 (2020). https://doi.org/10.1007/s10910-019-01057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01057-6

Keywords

Navigation