Skip to main content
Log in

Long-time existence for multi-dimensional periodic water waves

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size \({\varepsilon}\), smooth solutions exist up to times of the order of \({\varepsilon^{-5/3+}}\), for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. T. Alazard, N. Burq, and C. Zuily. On the water waves equations with surface tension. Duke Math. J., (3)158 (2011), 413–499

  2. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198, 71–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Delort, J.M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. 48, 1149–1238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Alazard and J.M. Delort. Sobolev estimates for two dimensional gravity water waves Astérisque 374 (2015) viii+241 pages

  5. T. Alazard and G. Métivier. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ., (10–12)34 (2009), 1632–1704

  6. D.M. Ambrose. Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal., (1)35 (2003), 211–244

  7. P. Baldi, M. Berti, and R. Montalto. KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré Anal. Non Linéaire, (6)33 (2016), 1589–1638

  8. P. Baldi, M. Berti, E. Haus, and R. Montalto. Time quasi-periodic gravity water waves in finite depth. Preprint arXiv:1708.01517

  9. D. Bambusi. Birkhoff normal form for some nonlinear PDEs. Comm. Math. Phys., (2)234 (2003), 253–285

  10. D. Bambusi and B. Grébert. Birkhoff normal form for pdes with tame modulus. Duke Math. J. (3)135 (2006), 507–567

  11. D. Bambusi, J.-M. Delort, B. Grébert, and J. Szeftel. Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. (11)60 (2007), 1665–1690

  12. M. Berti and J. M. Delort. Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions. Preprint arXiv:1702.04674

  13. M. Berti and R. Montalto. Quasi-periodic standing wave solutions of gravity-capillary water waves. To appear in Mem. Amer. Math. Soc. arXiv:1602.02411

  14. K. Beyer and M. Günther. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., (12)21 (1998), 1149–1183

  15. H. Christianson, V. Hur, and G. Staffilani. Strichartz estimates for the water-wave problem with surface tension. Commun. Partial Differ. Equ. (12)35 (2010), 2195–2252

  16. D. Christodoulou and H. Lindblad. On the motion of the free surface of a liquid. Commun. Pure Appl. Math., (12)53 (2000), 1536–1602

  17. D. Coutand and S. Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. (3)20 (2007), 829–930

  18. W. Craig. An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ., (8)10 (1985), 787–1003

  19. W. Craig, U. Schanz, and C. Sulem. The modulational regime of three-dimensional water waves and the Davey–Stewartson system. Ann. Inst. H. Poincaré Anal. Non Linéaire, (5)14 (1997), 615–667

  20. Delort, J.-M.: Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle. Trans. Amer. Math. Soc. 361, 4299–4365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.-M. Delort. A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein–Gordon equation on \(\mathbb{S}^1\). Astérisque No. 341 (2012), vi+113 pp

  22. J.-M. Delort. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., (1103)234 (2015), vi+80 pp

  23. J.-M. Delort and R. Imekraz. Long-time existence for the semilinear KleinGordon equation on a compact boundary-less Riemannian manifold. Commun. Partial Differ. Equ., (3)42 (2017), 388–416

  24. Delort, J.-M., Szeftel, J.: Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres. Int. Math. Res. Not. 37, 1897–1966 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delort, J.-M., Szeftel, J.: Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Am. J. Math. 128, 1187–1218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Deng, A. D. Ionescu, B. Pausader, and F. Pusateri. Global solutions for the \(3D\) gravity-capillary water waves system. Acta Math., (2)219 (2017), 213–402

  27. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity surface water waves equation in dimension 3. Ann. Math. 175, 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Germain, N. Masmoudi and J. Shatah. Global solutions for capillary waves equation in dimension 3. Commun. Pure Appl. Math., (4)68 (2015), 625–687

  29. B. Harrop-Griffiths, M. Ifrim and D. Tataru. Finite depth gravity water waves in holomorphic coordinates. Ann. PDE 3 (2017), no. 1, Art. 4, 102 pp

  30. Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346, 483–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions. Bull. Soc. Math. France 144, 369–394 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Ifrim and D. Tataru. The lifespan of small data solutions in two dimensional capillary water waves. Arch. Ration. Mech. Anal., (3)225 (2017), 1279–1346

  33. M. Ifrim and D. Tataru. Two dimensional gravity water waves with constant vorticity: I. Cubic lifespan. Preprint arXiv:1510.07732

  34. A. D. Ionescu and F. Pusateri. Global solutions for the gravity water waves system in 2D. Invent. Math. (3)199 (2015), 653–804

  35. A. D. Ionescu and F. Pusateri. Global analysis of a model for capillary water waves in 2D. Commun. Pure Appl. Math., (11)69 (2016), 2015–2071

  36. A. D. Ionescu and F. Pusateri. Global regularity for 2D water waves with surface tension. Mem. Amer. Math. Soc., (1227)256 (2018), v+124

  37. A. D. Ionescu and F. Pusateri Recent advances on the global regularity for irrotational water waves. Philos. Trans. Roy. Soc. A, (2111)376 (2018), 20170089, 28 pp

  38. D. Lannes. Well-posedness of the water waves equations. J. Amer. Math. Soc., (3)18 (2005), 605–654

  39. D. Lannes. The water waves problem. Mathematical analysis and asymptotics. Mathematical Surveys and Monographs, Vol. 188. American Mathematical Society, Providence, RI (2013). pp. xx+321

  40. H. Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math., (1)162 (2005), 109–194

  41. V. I. Nalimov. The Cauchy–Poisson problem. Dinamika Splosn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami 254 (1974), 10–210

  42. J. Shatah. Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math., (5)38 (1985), 685–696

  43. J. Shatah and C. Zeng. Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math., (5)61 (2008), 698–744

  44. J. Shatah and C. Zeng. Local well-posedness for the fluid interface problem. Arch. Ration. Mech. Anal. (2)199 (2011), 653–705

  45. C. Sulem and P.L. Sulem. The nonlinear Schrödinger equation. Self-focussing and wave collapse. Applied Mathematical Sciences, 139. Springer, New York (1999)

  46. N. Totz and S. Wu. A rigorous justification of the modulation approximation to the 2D full water wave problem. Comm. Math. Phys., (3)310 (2012), 817–883

  47. X. Wang. Global infinite energy solutions for the 2D gravity water waves system. Commun. Pure Appl. Math., (1)71 (2018), 90–162

  48. X. Wang. On 3D water waves system above a flat bottom. Anal. PDE, (4)10 (2017), 893–928

  49. X. Wang. Global solution for the 3D gravity water waves system above a flat bottom. Preprint arXiv:1508.06227

  50. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12, 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177, 45–135 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 125–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18, 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  55. V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zhurnal Prikladnoi Mekhaniki i Teckhnicheskoi Fiziki 9 (1968), no.2, 86–94. J. Appl. Mech. Tech. Phys., 9, 1990–1994.

Download references

Acknowledgements

We would like to thank J.M. Delort for useful discussions on the topic, and for pointing out the work [DI17] where extended lifespan results are obtained for strongly semilinear KG equations in the presence of small divisors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pusateri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. D. Ionescu was supported in part by NSF Grant DMS-1600028 and by NSF-FRG Grant DMS-1463753. F. Pusateri was supported in part by Start-up grants from Princeton University and the University of Toronto, and NSERC Grant RGPIN-0648.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu, A.D., Pusateri, F. Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal. 29, 811–870 (2019). https://doi.org/10.1007/s00039-019-00490-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00490-8

Navigation