Skip to main content
Log in

Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) decorated on reduced graphene oxide (rGO) films is successfully prepared with pyrrole (Py) monomers and rGO through one-step combining oxidation with polymerization reaction. Compared with the pure individual components, rGO/PPy compound turns out better electrochemical characteristics owing to the introduction of rGO sheets, which improves the specific surface area and the conductivity of composite material. When the amount of rGO is 10% of the total, the rGO/PPy compound delivers the best capacitance of 389.3 F g−1 at 1.0 A g−1 in a three-electrode system and 266.8 F g−1 at 0.25 A g−1 in the symmetric supercapacitor system. In addition, asymmetric device (rGO/PPy//AC) has been successfully fabricated using optimized rGO/PPy compound as positive electrode, activated carbon as negative electrode (AC) and 1 M Na2SO4 aqueous solution as electrolyte. The device obtains long cycle stability under the high-voltage region from 0 to 1.6 V, meanwhile displaying the satisfied energy density of 19.7 Wh kg−1 at 478.1 W kg−1. Besides, the rGO/PPy//AC device presents satisfactory rate capability and long life time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peng LL, Fang ZW, Zhu Y, Yan CS, Yu GH (2018) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater 8:1702179. https://doi.org/10.1002/aenm.201702179

    Article  CAS  Google Scholar 

  2. Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801. https://doi.org/10.1016/j.est.2019.01.010

    Article  CAS  Google Scholar 

  3. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  4. Meng QF, Cai KF, Chen YX, Chen LD (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268. https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  5. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375. https://doi.org/10.1002/adfm.201100058

    Article  CAS  Google Scholar 

  6. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777. https://doi.org/10.1039/c4cs00266k

    Article  CAS  Google Scholar 

  7. Jin RC, Meng M, Zhang SH, Yang LX, Li GH (2018) CNTs@C@Cu2−xSe hybrid materials: an advanced electrode for high performance lithium batteries and supercapacitors. Energy Technol 6:2179. https://doi.org/10.1002/ente.201800236

    Article  CAS  Google Scholar 

  8. Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600539. https://doi.org/10.1002/advs.201600539

    Article  CAS  Google Scholar 

  9. Dong J, Jiang YL, Li QD, Wei QL, Yang W, Tan SS, Xu X, An QY, Mai LQ (2017) Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. J Mater Chem A 5:10827. https://doi.org/10.1039/c7ta00463j

    Article  CAS  Google Scholar 

  10. Ramirez-Castro C, Schütter C, Passerini S, Balducci A (2016) Microporous carbonaceous materials prepared from biowaste for supercapacitor application. Electrochim Acta 206:452. https://doi.org/10.1016/j.electacta.2015.12.126

    Article  CAS  Google Scholar 

  11. Kandasamy SK, Kandasamy K (2018) Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J Inorg Organome P 28:559. https://doi.org/10.1007/s10904-018-0779-x

    Article  CAS  Google Scholar 

  12. Masikhwa TM, Madito MJ, Bello A, Dangbegnon JK, Manyala N (2017) High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. J Colloid Interf Sci 488:155. https://doi.org/10.1016/j.jcis.2016.10.095

    Article  CAS  Google Scholar 

  13. Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Fabiane M, Manyala N (2015) Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J Power Sources 273:305. https://doi.org/10.1016/j.jpowsour.2014.09.094

    Article  CAS  Google Scholar 

  14. Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim S-J (2019) Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor. Chem Eng J 359:409. https://doi.org/10.1016/j.cej.2018.11.153

    Article  CAS  Google Scholar 

  15. Li XQ, Liu YH, Jin ZY, Li PP, Chen XJ, Xiao D (2019) Enhanced electrochemical performance of C-NiO/NiCO2O4//AC asymmetric supercapacitor based on material design and device exploration. Electrochim Acta 296:335. https://doi.org/10.1016/j.electacta.2018.11.011

    Article  CAS  Google Scholar 

  16. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  17. Qi K, Hou RZ, Zaman S, Xia BY, Duan HW (2018) A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. J Mater Chem A 6:3913. https://doi.org/10.1039/c7ta11245a

    Article  CAS  Google Scholar 

  18. Wang JP, Li X, Du XF, Wang J, Ma HR, Jing XL (2017) Polypyrrole composites with carbon materials for supercapacitors. Chem Pap 71:293. https://doi.org/10.1007/s11696-016-0048-9

    Article  CAS  Google Scholar 

  19. Guo XM, Bai NN, Tian Y, Gai LG (2018) Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors. J Power Sources 408:51. https://doi.org/10.1016/j.jpowsour.2018.10.083

    Article  CAS  Google Scholar 

  20. Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong MY, Liu H, Zhang JX, Li TX, Wang N, Guo ZH, Angaiah S (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414. https://doi.org/10.1039/C8NR06345A

    Article  CAS  Google Scholar 

  21. Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863. https://doi.org/10.1021/nl102661q

    Article  CAS  Google Scholar 

  22. Feng XM, Yan ZZ, Li RM, Liu XF, Hou WH (2013) The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Poly Bull 70:2291. https://doi.org/10.1007/s00289-013-0952-x

    Article  CAS  Google Scholar 

  23. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  24. Zhang YH, Cho UR (2018) Enhanced thermo-physical properties of nitrile-butadiene rubber nanocomposites filled with simultaneously reduced and functionalized graphene oxide. Polym Compos 39:3227. https://doi.org/10.1002/pc.24335

    Article  CAS  Google Scholar 

  25. Zhang YH, Park S-J (2018) Influence of the nanoscaled hybrid based on nanodiamond@ graphene oxide architecture on the rheological and thermo-physical performances of carboxylated-polymeric composites. Compos Part A Appl S 112:356. https://doi.org/10.1016/j.compositesa.2018.06.020

    Article  CAS  Google Scholar 

  26. Liu Y, Zhang Y, Ma GH, Wang Z, Liu KY, Liu HT (2013) Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta 88:519. https://doi.org/10.1016/j.electacta.2012.10.082

    Article  CAS  Google Scholar 

  27. Liu GJ, Wang B, Liu T, Wang L, Luo H, Gao TT, Wang F, Liu AM, Wang DL (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6:1822. https://doi.org/10.1039/c7ta10140f

    Article  CAS  Google Scholar 

  28. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  29. Zhang YH, Park S-J (2018) In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Compos Part A Appl Sci 112:40. https://doi.org/10.1016/j.compositesa.2018.06.004

    Article  CAS  Google Scholar 

  30. Jin RC, Jiang H, Sun YX, Ma YQ, Li HH, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501. https://doi.org/10.1016/j.cej.2016.06.032

    Article  CAS  Google Scholar 

  31. Fan LQ, Liu GJ, Wu JH, Liu L, Lin JM, Wei YL (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26. https://doi.org/10.1016/j.electacta.2014.05.137

    Article  CAS  Google Scholar 

  32. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13:497. https://doi.org/10.1002/1521-4095(200104)13:7%3c497:AID-ADMA497%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  33. Khosrozadeh A, Xing M, Wang Q (2015) A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl Energy 153:87. https://doi.org/10.1016/j.apenergy.2014.08.046

    Article  CAS  Google Scholar 

  34. Mo MM, Chen CC, Gao H, Chen MW, Li DG (2018) Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors. Electrochim Acta 269:11. https://doi.org/10.1016/j.electacta.2018.02.118

    Article  CAS  Google Scholar 

  35. Wu JH, Yu HJ, Fan LQ, Luo GG, Lin JM, Huang ML (2012) A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. J Mater Chem 22:19025. https://doi.org/10.1039/c2jm33856d

    Article  CAS  Google Scholar 

  36. Ml He, Fic K, Fra E, Novák P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9:623. https://doi.org/10.1039/C5EE02875B

    Article  Google Scholar 

  37. Khomenko V, Raymundo-Pinero E, Frackowiak E, Beguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567. https://doi.org/10.1007/s00339-005-3397-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2018MEM020, ZR2016BM27, ZR2019PEM011), and Project of Shandong Province Higher Educational Science and Technology Program (J16LA09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijing Liu or Leqing Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Shi, Y., Wang, L. et al. Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Lett. 30, 389–397 (2020). https://doi.org/10.1007/s42823-019-00108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00108-x

Keywords

Navigation