Skip to main content
Log in

Digestibility and Bioaccessibility of Pickering Emulsions of Roasted Coffee Oil Stabilized by Chitosan and Chitosan-Sodium Tripolyphosphate Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Due to the valuable lipid fraction composition present in roasted coffee oil, it has become important to develop methods that modify its structure, such as emulsion-based encapsulation systems, favoring its use in food industry. Pickering emulsions have appeared as a potential alternative to protect oil droplets stabilized by solid particles rather than the use of surfactants. This work investigated the ability of chitosan (CS) nanoparticles produced by deprotonation and by ionic gelation to stabilize emulsions with different lipid phase content as an alternative to encapsulate roasted coffee oil. An in vitro digestion model consisting of mouth, gastric and intestinal phases was used to characterize the rate and extent of lipid phase digestion, emulsion microstructure, and bioaccessibility of total phenolic compounds. All emulsions presented some structural changes attributed to flocculation and coalescence throughout simulated gastrointestinal digestion. Better droplet stabilization using the deprotonation method was achieved when lower oil content was used, leading to higher bioaccessibility of total phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Oliveira, P.M. Cruz, M.N. Eberlin, F.A. Cabral, Ciên. Tecnol. Aliment 25, 677–682 (2005)

    Article  Google Scholar 

  2. S. Calligaris, M. Munari, G. Arrighetti, L. Barba, Eur. J. Lipid Sci. Technol. 111, 1270–1277 (2009)

    Article  CAS  Google Scholar 

  3. T.A.L. Wagemaker, C.R.L. Carvalho, N.B. Maia, S.R. Baggio, O.G. Filho, Ind. Crop. Prod. 33, 469–473 (2011)

    Article  CAS  Google Scholar 

  4. K. Speer, I. Kölling-Speer, Braz. J. Plant Physiol. 18, 201–216 (2006)

    Article  CAS  Google Scholar 

  5. A. Farah, in Coffee: Emerging health effects and disease prevention, ed. By Y. F. Chu (Willey-Blackwell, New York, 2012), p. 21–58

  6. D.N. Raba, M.A. Poiana, A.B. Borozan, M. Stef, F. Radu, M.V. Popa, PLoS One 10, 1–20 (2015)

    Article  Google Scholar 

  7. C. Cárdenas, A. R. Quesada, M. Á. Medina, In: Coffee in Health and Disease Prevention, ed. By V. R. Preedy (Academic Press, London, 2015), p. 627–633

  8. T. Hatzold, In Coffee: Emerging health effects and disease prevention, ed. By Y. F. Chu (Willey-Blackwell, New York, 2012), p. 1–20

  9. C. Sarrazin, J.L. Le Quéré, C. Gretsch, R. Liardon, Food Chem. 70, 99–106 (2000)

    Article  CAS  Google Scholar 

  10. M. Anese, L. Manzocco, M.C. Nicoli, J. Agric, Food Chem. 54, 5571–5576 (2006)

    Article  CAS  Google Scholar 

  11. C. Qian, E. Decker, H. Xiao, D.J. McClements, Food Chem. 135(3), 1440–1447 (2012)

    Article  CAS  Google Scholar 

  12. H. Adelmann, B.P. Binks, R. Mezzenga, Langmuir. 28(3), 1694–1697 (2012)

    Article  CAS  Google Scholar 

  13. W. Ramsden, Proc. R. Soc. Lond. 72, 156–164 (1903)

    CAS  Google Scholar 

  14. S.U. Pickering, J. Chem. Soc. 91, 2001–2021 (1907)

    Article  Google Scholar 

  15. E. Dickinson, Curr. Opin. Colloid Interface Sci. 15, 40–49 (2010)

  16. C.C. Berton-Carabin, K. Schroën, Annu. Rev. Food Sci. Technol., 263–297 (2015)

  17. H. Liu, G. Wang, S. Zou, Z. Wei, Z. Tong, Langmuir. 28(30), 11017–11024 (2012)

    Article  CAS  Google Scholar 

  18. B. Shah, C. Zhang, Y. Li, B. Li, Food Res. Int. 89(Pt 1), 399–407 (2016)

    Article  CAS  Google Scholar 

  19. W.M. Mwangi, K.W. Ho, B.T. Tey, E.S. Chan, Food Hydrocoll. 60, 543–550 (2016b)

    Article  CAS  Google Scholar 

  20. Z. Xiao, E. Wang, G. Zhu, R. Zhou, Y. Niu, Pol. J. Chem. Technol. 18, 1–8 (2016)

    Article  Google Scholar 

  21. J.F. Steffe, 2nd edn (Freeman Press, East Lansing, 1996), p. 15

    Google Scholar 

  22. P. Morell, S. Fiszman, P. Varela, I. Hernando, Food Hydrocoll. 41, 343–353 (2014)

    Article  CAS  Google Scholar 

  23. T. Sanz, S. Handschin, J. Nuessli, B. Conde-Petit, Food Sci. Technol. Int. 13, 381–388 (2007)

    Article  Google Scholar 

  24. Y. Li, M. Hu, D.J. McClements, Food Chem. 126, 498–505 (2011)

    Article  CAS  Google Scholar 

  25. R. Lentle, P.M. Janssen, P. Asvarujanon, P. Chambers, K. Stafford, Y. Hemar, J. Comp. Physiol. B. 177, 543–556 (2007)

    Article  Google Scholar 

  26. Y. Li, D.J. McClements, J. Agric. Food Chem. 58, 8085–8092 (2010)

    Article  CAS  Google Scholar 

  27. L. Arnal, M.A. Del Rìo, Food Sci. Technol. Int. 10, 179–185 (2004)

    Article  Google Scholar 

  28. B. Zeeb, J. Beicht, T. Eisele, M. Gibis, L. Fischer, J. Weiss, Food Res. Int. 54, 1712–1721 (2013)

    Article  CAS  Google Scholar 

  29. D.J. McClements, Y. Li, Food Funct. 1(1), 32–59 (2010)

    Article  CAS  Google Scholar 

  30. A. Sarkar, H. Ye, Singh, Food Hydrocoll 60, 77–84 (2016)

    Article  CAS  Google Scholar 

  31. L. Salvia-Trujillo, S.H.E. Verkempinck, L. Sun, A.M. Van Loey, T. Grauwet, M.E. Hendrickx, Food Chem. 229, 653–662 (2017)

    Article  CAS  Google Scholar 

  32. T. Winuprasith, P. Khomein, W. Mitburmrung, M. Suphantharika, A. Nitithamyong, D.J. McClements, Food Hydrocoll. 83, 153–164 (2018)

    Article  CAS  Google Scholar 

  33. D.J. McClements, Food Funct. 9(1), 22–41 (2018)

    Article  CAS  Google Scholar 

  34. K. Ahmed, Y. Li, D.J. McClements, H. Xiao, Food Chem. 132, 799–807 (2012)

    Article  CAS  Google Scholar 

  35. F.A. Bellesi, M.J. Martinez, V.M.P. Ruiz-Henestrosa, A.M.R. Pilosof, Food Hydrocoll. 52, 47–56 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001 and São Paulo Research Foundation (FAPESP - Grant 2016/22727-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Franco Ribeiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, E.F., Borreani, J., Moraga, G. et al. Digestibility and Bioaccessibility of Pickering Emulsions of Roasted Coffee Oil Stabilized by Chitosan and Chitosan-Sodium Tripolyphosphate Nanoparticles. Food Biophysics 15, 196–205 (2020). https://doi.org/10.1007/s11483-019-09614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09614-x

Keywords

Navigation