Skip to main content

Advertisement

Log in

Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the Availability and Pressure-Temperature Stability of Phytochemicals

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High pressure processing (HPP) is the most widespread nonthermal food pasteurization technology. The stability during HPP treatments of chemical compounds with health-enhancing properties found in plants has been intensively studied. A rising research interest is the elucidation of the mechanisms by which HPP may enhance their biosynthesis and bioavailability. Pressure levels under 100 MPa appear to induce oxidative stress in plant tissue leading to the activation of metabolic pathways related to the biosynthesis of secondary metabolites. Likewise, treatments at ∼150–200 MPa result in cellular membrane rupture, increased cell wall permeability, and nearly complete cell viability loss while metabolic activity gradually ceases at higher pressure. Major structural changes occur during treatments at higher pressure levels influencing the bioavailability of phytochemicals. Carotenoids attached to polymeric structures on cell walls, or entrapped inside cellular organelles, are released into the media by pressure treatments at 200–400 MPa, which may also initiate their degradation. Depending on the food matrix, phenolic compounds and vitamin C are released, degraded, or remain unaffected by 200–600 MPa treatments. At high pressure, phenolics are highly susceptible to oxidation and enzymatic reactions, whereas ascorbic acid stability depends largely on the dissolved oxygen concentration. Future work should focus on pressure come-up time (CUT) effects, development of kinetic models coupling the biosynthesis and/or release of phytochemicals with its pressure-temperature stability, and determinations of their in vitro and in vivo bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bound phenolics in foods, a review. Food Chem 152:46–55

    Article  CAS  Google Scholar 

  2. Aguilera JM (2005) Why food microstructure? J Food Eng 67(1–2):3–11

    Article  Google Scholar 

  3. Aka J-P, Courtois F, Louarme L, Nicolas J, Billaud C (2013) Modelling the interactions between free phenols, L-ascorbic acid, apple polyphenoloxidase and oxygen during a thermal treatment. Food Chem 138(2–3):1289–1297

    Article  CAS  Google Scholar 

  4. Akhmazillah MFN, Farid MM, Silva FVM (2013) High pressure processing (HPP) of honey for the improvement of nutritional value. Innovative Food Sci Emerg Technol 20:59–63

    Article  CAS  Google Scholar 

  5. Alvarez-Jubete L, Valverde J, Patras A, Mullen AM, Marcos B (2013) Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol 7(3):682–692

    Article  CAS  Google Scholar 

  6. Álvarez-Virrueta DR, García-López EG, Montalvo-González E, Ramírez JA, Mata-Montes-de-Oca M, Tovar-Gómez B (2012) Effect of high hydrostatic pressure on postharvest physiology of the “Ataulfo” mango. CyTA - Journal of Food 10(3):173–181

    Article  Google Scholar 

  7. Angersbach A, Heinz V, Knorr D (2002) Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnol Prog 18(3):597–603

    Article  CAS  Google Scholar 

  8. Balasubramanian S, Balasubramaniam VM (2003) Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res Int 36(7):661–668

    Article  Google Scholar 

  9. Barba FJ, Esteve MJ, Frigola A (2010) Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J Agric Food Chem 58(18):10070–10075

    Article  CAS  Google Scholar 

  10. Barba FJ, Esteve MJ, Frigola A (2013) Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Res Int 50(2):545–549

    Article  CAS  Google Scholar 

  11. Bermejo-Prada A, Segovia-Bravo KA, Guignon B, Otero L (2015) Effect of hyperbaric storage at room temperature on pectin methylesterase activity and serum viscosity of strawberry juice. Innovative Food Sci Emerg Technol 30:170–176

    Article  CAS  Google Scholar 

  12. Buckow R, Kastell A, Terefe NS, Versteeg C (2010) Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. J Agric Food Chem 58(18):10076–10084

    Article  CAS  Google Scholar 

  13. Butz P, Edenharder R, Garcia AF, Fister H, Merkel C, Tauscher B (2002) Changes in functional properties of vegetables induced by high pressure treatment. Food Res Int 35(2–3):295–300

    Article  CAS  Google Scholar 

  14. Camiro-Cabrera M (2015) Efecto del tratamiento combinado de altas presiones hidrostáticas (APH) y temperatura sobre la concentración de compuestos nutracéuticos y su actividad antioxidante de puré de mango. Escuela de Ingeniería y Ciencias. Tecnológico de Monterrey, Monterrey, NL, MX

    Google Scholar 

  15. Camiro-Cabrera M, Martín-Belloso O, Escobedo-Avellaneda ZJ & Welti-Chanes J (2017) Effect of high hydrostatic pressure and mild heat on the functional compounds of mango pulp (Mangifera inidica L.). Food Bioprocess Technol. 10(In Press). doi:10.1007/s11947-016-1844-5

  16. Candelario-Rodríguez HE, Zavala-García F, Ramírez-De León JA, Aranda-Ruiz J, Mata Montes de Oca M, Velazquez G (2014) Effect of high pressure processing on postharvest physiology of ‘Keitt’ mango. Postharvest Biol Technol 94:35–40

    Article  CAS  Google Scholar 

  17. Cao X, Zhang Y, Zhang F, Wang Y, Yi J, Liao X (2011) Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. J Sci Food Agric 91(5):877–885

    Article  CAS  Google Scholar 

  18. Castañón-Rodriguez JF, Torrestiana-Sanchez B, Montero-Lagunes M, Portilla-Arias J, Ramirez de Leon JA, Aguilar-Uscanga MG (2013) Using high pressure processing (HPP) to pretreat sugarcane bagasse. Carbohydr Polym 98(1):1018–1024

    Article  CAS  Google Scholar 

  19. Castro SM, Saraiva JA, Lopes-da-Silva JA, Delgadillo I, Loey AV, Smout C, Hendrickx M (2008) Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chem 107(4):1436–1449

    Article  CAS  Google Scholar 

  20. Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int 44(2):499–509

    Article  CAS  Google Scholar 

  21. Chauhan SP, Sheth NR, Rathod IS, Suhagia BN, Maradia RB (2012) Analysis of betalains from fruits of Opuntia species. Phytochem Rev 12(1):35–45

    Article  CAS  Google Scholar 

  22. Chen D, Pang X, Zhao J, Gao L, Liao X, Wu J, Li Q (2015a) Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage. Innovative Food Sci Emerg Technol 32:16–28

    Article  Google Scholar 

  23. Chen X, Qin W, Ma L, Xu F, Jin P, Zheng Y (2015b) Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT Food Sci Technol 62(1):927–933

    Article  CAS  Google Scholar 

  24. Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11(2):153–177

    Article  CAS  Google Scholar 

  25. Clariana M, Valverde J, Wijngaard H, Mullen AM, Marcos B (2011) High pressure processing of swede (Brassica napus): impact on quality properties. Innovative Food Sci Emerg Technol 12(2):85–92

    Article  Google Scholar 

  26. Corrales M, Butz P, Tauscher B (2008) Anthocyanin condensation reactions under high hydrostatic pressure. Food Chem 110(3):627–635

    Article  CAS  Google Scholar 

  27. Corrales M, García AF, Butz P, Tauscher B (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng 90(4):415–421

    Article  CAS  Google Scholar 

  28. Cruz RMS, Rubilar JF, Ulloa PA, Torres JA, Vieira MC (2011) New food processing technologies: development and impact on the consumer acceptability. In: Columbus F (ed) Food quality: control, analysis and consumer concerns. Nova Science Publishers, New York, NY, pp 555–584

  29. de Ancos B, Gonzalez E, Cano MP (2000) Effect of high-pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J Agric Food Chem 48(8):3542–3548

    Article  CAS  Google Scholar 

  30. de Ancos B, Sgroppo S, Plaza L, Cano MP (2002) Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J Sci Food Agric 82(8):790–796

    Article  CAS  Google Scholar 

  31. De Roeck A, Duvetter T, Fraeye I, IVd P, Sila DN, Loey AV, Hendrickx M (2009) Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture. Food Chem 115(1):207–213

    Article  CAS  Google Scholar 

  32. De Roeck A, Sila DN, Duvetter T, Van Loey A, Hendrickx M (2008) Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chem 107(3):1225–1235

    Article  CAS  Google Scholar 

  33. Dede S, Alpas H, Bayındırlı A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87(5):773–782

    Article  CAS  Google Scholar 

  34. Del Pozo-Insfran D, Del Follo-Martinez A, Talcott ST, Hernández-Brenes C (2007) Stability of copigmented anthocyanins and ascorbic acid in muscadine grape juice processed by high hydrostatic pressure. J Food Sci 72(4):S247–S253

    Article  CAS  Google Scholar 

  35. Denoya GI, Nanni MS, Apóstolo NM, Vaudagna SR & Polenta GA (2017) Biochemical and microstructural assessment of minimally processed peaches subjected to high pressure processing: implications on the freshness condition. Innovative Food Sci Emerg Technol. 36:212–220

  36. Denoya GI, Polenta GA, Apóstolo NM, Budde CO, Sancho AM, Vaudagna SR (2016) Optimization of high hydrostatic pressure processing for the preservation of minimally processed peach pieces. Innovative Food Sci Emerg Technol 33:84–93

    Article  CAS  Google Scholar 

  37. Denoya GI, Vaudagna SR, Polenta G (2015) Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT Food Sci Technol 62(1):801–806

    Article  CAS  Google Scholar 

  38. Dörnenburg H, Knorr D (1998) Monitoring the impact of high-pressure processing on the biosynthesis of plant metabolites using plant cell cultures. Trends Food Sci Technol 9(10):355–361

    Article  Google Scholar 

  39. Escobedo-Avellaneda Z, Gutiérrez-Uribe J, Valdez-Fragoso A, Torres JA, Welti-Chanes J (2015) High hydrostatic pressure combined with mild temperature for the preservation of comminuted orange: effects on functional compounds and antioxidant activity. Food Bioprocess Technol 8(5):1032–1044

    Article  CAS  Google Scholar 

  40. Ferrari G, Maresca P, Ciccarone R (2010) The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. J Food Eng 100(2):245–253

    Article  CAS  Google Scholar 

  41. Ferreira ARFC, Figueiredo AB, Evtuguin DV, Saraiva JA (2011) High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose. Green Chem 13(10):2764–2767

    Article  CAS  Google Scholar 

  42. Figueiredo A, Evtuguin D, Saraiva J (2010) Effect of high pressure treatment on structure and properties of cellulose in eucalypt pulps. Cellulose 17(6):1193–1202

    Article  CAS  Google Scholar 

  43. Flores FP, Singh RK, Kong F (2016) Anthocyanin extraction, microencapsulation, and release properties during in vitro digestion. Food Reviews International 32(1):46–67

    Article  CAS  Google Scholar 

  44. Garcia AF, Butz P, Tauscher B (2001) Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.). J Food Sci 66(7):1033–1038

    Article  CAS  Google Scholar 

  45. George JM, Senthamizh Selvan T, Rastogi NK (2016) High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Sci Emerg Technol 33:100–107

    Article  CAS  Google Scholar 

  46. González-Cebrino F, Durán R, Delgado-Adámez J, Contador R, Ramírez R (2013) Changes after high-pressure processing on physicochemical parameters, bioactive compounds, and polyphenol oxidase activity of red flesh and peel plum purée. Innovative Food Sci Emerg Technol 20:34–41

    Article  CAS  Google Scholar 

  47. Gonzalez ME, Anthon GE, Barrett DM (2010a) Onion cells after high pressure and thermal processing: comparison of membrane integrity changes using different analytical methods and impact on tissue texture. J Food Sci 75(7):E426–E432

    Article  CAS  Google Scholar 

  48. Gonzalez ME, Barrett DM, McCarthy MJ, Vergeldt FJ, Gerkema E, Matser AM, Van As H (2010b) 1H-NMR study of the impact of high pressure and thermal processing on cell membrane integrity of onions. J Food Sci 75(7):E417–E425

    Article  CAS  Google Scholar 

  49. Gonzalez ME, Jernstedt JA, Slaughter DC, Barrett DM (2010c) Influence of cell integrity on textural properties of raw, high pressure, and thermally processed onions. J Food Sci 75(7):E409–E416

    Article  CAS  Google Scholar 

  50. Gupta R, Kopec RE, Schwartz SJ, Balasubramaniam VM (2011) Combined pressure–temperature effects on carotenoid retention and bioaccessibility in tomato juice. J Agric Food Chem 59(14):7808–7817

    Article  CAS  Google Scholar 

  51. Hernández-Carrión M, Hernando I, Quiles A (2014a) High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Sci Emerg Technol 26:76–85

    Article  CAS  Google Scholar 

  52. Hernández-Carrión M, Hernando I, Sotelo-Díaz I, Quintanilla-Carvajal MX, Quiles A (2015) Use of image analysis to evaluate the effect of high hydrostatic pressure and pasteurization as preservation treatments on the microstructure of red sweet pepper. Innovative Food Sci Emerg Technol 27:69–78

    Article  CAS  Google Scholar 

  53. Hernández-Carrión M, Vázquez-Gutiérrez JL, Hernando I, Quiles A (2014b) Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”. J Food Sci 79(1):C32–C38

    Article  CAS  Google Scholar 

  54. Huang W, Bi X, Zhang X, Liao X, Hu X, Wu J (2013) Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innovative Food Sci Emerg Technol 18:74–82

    Article  CAS  Google Scholar 

  55. Ioannou I, Hafsa I, Hamdi S, Charbonnel C, Ghoul M (2012) Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J Food Eng 111(2):208–217

    Article  CAS  Google Scholar 

  56. Isaacs NS, van Eldik R (1997) A mechanistic study of the reduction of quinones by ascorbic acid. J Chem Soc Perkin Trans 2(8):1465–1468

    Article  Google Scholar 

  57. Jacobo-Velázquez DA, Cuéllar-Villarreal MdR, Welti-Chanes J, Cisneros-Zevallos L, Ramos-Parra PA & Hernández-Brenes C (2017) Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends Food Sci Technol 60:80–87

  58. Jacobo-Velázquez DA, González-Agüero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 5:8608, doi:10.1038/srep08608

  59. Jacobo-Velázquez DA, Hernández-Brenes C (2012) Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innovative Food Sci Emerg Technol 16:121–128

    Article  CAS  Google Scholar 

  60. Jacobo-Velázquez DA, Martínez-Hernández GB, del C. Rodríguez S, Cao C-M & Cisneros-Zevallos L (2011) Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J Agric Food Chem 59(12), 6583–6593.

  61. Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567

    Article  CAS  Google Scholar 

  62. Jayachandran LE, Chakraborty S, Rao PS (2015) Effect of high pressure processing on physicochemical properties and bioactive compounds in litchi based mixed fruit beverage. Innovative Food Sci Emerg Technol 28:1–9

    Article  CAS  Google Scholar 

  63. Jermann C, Koutchma T, Margas E, Leadley C & Ros-Polski V (2015) Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science & Emerging Technologies. 31:14–27

  64. Jiménez-Aguilar DM, Escobedo-Avellaneda Z, Martín-Belloso O, Gutiérrez-Uribe J, Valdez-Fragoso A, García-García R, Torres JA, Welti-Chanes J (2015) Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Engineering Reviews. 7(2):198–208

    Article  CAS  Google Scholar 

  65. Jolie RP, Christiaens S, De Roeck A, Fraeye I, Houben K, Van Buggenhout S, Van Loey AM, Hendrickx ME (2012) Pectin conversions under high pressure: implications for the structure-related quality characteristics of plant-based foods. Trends Food Sci Technol 24(2):103–118

    Article  CAS  Google Scholar 

  66. Jun X (2013) High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Crit Rev Food Sci Nutr 53(8):837–852

    Article  CAS  Google Scholar 

  67. Keenan DF, Brunton N, Butler F, Wouters R, Gormley R (2011) Evaluation of thermal and high hydrostatic pressure processed apple purees enriched with prebiotic inclusions. Innovative Food Sci Emerg Technol 12(3):261–268

    Article  CAS  Google Scholar 

  68. Kim YS, Park SJ, Cho YH, Park J (2001) Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. J Food Sci 66(9):1355–1360

    Article  CAS  Google Scholar 

  69. Knockaert G, De Roeck A, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A (2011) Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chem 125(3):903–912

    Article  CAS  Google Scholar 

  70. Knockaert G, Pulissery SK, Colle I, Van Buggenhout S, Hendrickx M, Loey AV (2012) Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. Food Chem 135(3):1290–1297

    Article  CAS  Google Scholar 

  71. Knockaert G, Pulissery SK, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A (2013) Isomerisation of carrot β-carotene in presence of oil during thermal and combined thermal/high pressure processing. Food Chem 138(2–3):1515–1520

    Article  CAS  Google Scholar 

  72. Krebbers B, Master AM, Koets M, Van den Berg H (2002) Quality and storage stability of high-pressure preserved green beans. J Food Eng 54(1):27–33

    Article  Google Scholar 

  73. Landl A, Abadias M, Sárraga C, Viñas I, Picouet PA (2010) Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Sci Emerg Technol 11(4):557–564

    Article  CAS  Google Scholar 

  74. Lemmens L, Van Buggenhout S, Oey I, Van Loey A, Hendrickx M (2009) Towards a better understanding of the relationship between the β-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Res Int 42(9):1323–1330

    Article  CAS  Google Scholar 

  75. Liu S, Xu Q, Li X, Wang Y, Zhu J, Ning C, Chang X, Meng X (2016) Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innovative Food Sci Emerg Technol 36:48–58

    Article  CAS  Google Scholar 

  76. Mahadevan S, Nitin N, Salvi D & Karwe MV (2015) High-pressure enhanced infusion: influence of process parameters. J. Food Process. Eng.. 38(6):601–612

  77. Marigheto N, Vial A, Wright K, Hills B (2004) A combined NMR and microstructural study of the effect of high-pressure processing on strawberries. Appl Magn Reson 26(4):521–531

    Article  Google Scholar 

  78. Marigheto NA, Moates GK, Furfaro ME, Waldron KW, Hills BP (2009) Characterisation of ripening and pressure-induced changes in tomato pericarp using NMR relaxometry. Appl Magn Reson 36(1):35–47

    Article  CAS  Google Scholar 

  79. Marszałek K, Mitek M, Skąpska S (2015) The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry purée. Innovative Food Sci Emerg Technol 27:48–56

    Article  CAS  Google Scholar 

  80. Marx M, Stuparic M, Schieber A, Carle R (2003) Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chem 83(4):609–617

    Article  CAS  Google Scholar 

  81. McInerney JK, Seccafien CA, Stewart CM, Bird AR (2007) Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innovative Food Sci Emerg Technol 8(4):543–548

    Article  CAS  Google Scholar 

  82. Moltó-Puigmartí C, Permanyer M, Castellote AI, López-Sabater MC (2011) Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem 124(3):697–702

    Article  CAS  Google Scholar 

  83. Morata A, Loira I, Vejarano R, Bañuelos MA, Sanz PD, Otero L, Suárez-Lepe JA (2015) Grape processing by high hydrostatic pressure: effect on microbial populations, phenol extraction and wine quality. Food Bioprocess Technol 8(2):277–286

    Article  CAS  Google Scholar 

  84. Moreira SA, Duarte RV, Fernandes PAR, Alves SP, Bessa RJ, Delgadillo I, Saraiva JA (2015) Hyperbaric storage preservation at room temperature using an industrial-scale equipment: case of two commercial ready-to-eat pre-cooked foods. Innovative Food Sci Emerg Technol 32:29–36

    Article  CAS  Google Scholar 

  85. Moussa M, Espinasse V, Perrier-Cornet J-M, Gervais P (2013) Can pressure-induced cell inactivation be related to cell volume compression? A case study for Saccharomyces cerevisiae. Food Res Int 54(1):738–744

    Article  CAS  Google Scholar 

  86. Mújica-Paz H, Valdez-Fragoso A, Samson CT, Welti-Chanes J, Torres JA (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4(6):969–985

    Article  Google Scholar 

  87. Oey I, Verlinde P, Hendrickx M, Loey A (2006) Temperature and pressure stability of L-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: a kinetic study. Eur Food Res Technol 223(1):71–77

    Article  CAS  Google Scholar 

  88. Oliveira SCT, Figueiredo AB, Evtuguin DV, Saraiva JA (2012) High pressure treatment as a tool for engineering of enzymatic reactions in cellulosic fibres. Bioresour Technol 107:530–534

    Article  CAS  Google Scholar 

  89. Ortega VG, Ramírez JA, Velázquez G, Tovar B, Mata M, Montalvo E (2013) Effect of high hydrostatic pressure on antioxidant content of ‘Ataulfo’ mango during postharvest maturation. Food Science and Technology (Campinas) 33:561–568

    Article  Google Scholar 

  90. Ozdal T, Capanoglu E, Altay F (2013) A review on protein–phenolic interactions and associated changes. Food Res Int 51(2):954–970

    Article  CAS  Google Scholar 

  91. Paciulli M, Medina-Meza IG, Chiavaro E, Barbosa-Cánovas GV (2016) Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT Food Sci Technol 68:98–104

    Article  CAS  Google Scholar 

  92. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72(2):R21–R32

    Article  CAS  Google Scholar 

  93. Park SH, Balasubramaniam VM, Sastry SK (2013) Estimating pressure induced changes in vegetable tissue using in situ electrical conductivity measurement and instrumental analysis. J Food Eng 114(1):47–56

    Article  Google Scholar 

  94. Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2009a) Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Sci Emerg Technol 10(1):16–22

    Article  CAS  Google Scholar 

  95. Patras A, Brunton NP, Da Pieve S, Butler F (2009b) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Sci Emerg Technol 10(3):308–313

    Article  CAS  Google Scholar 

  96. Patras A, Brunton NP, O'Donnell C, Tiwari BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21(1):3–11

    Article  CAS  Google Scholar 

  97. Pinto C, Moreira SA, Fidalgo LG, Santos MD, Delgadillo I, Saraiva JA (2016) Shelf-life extension of watermelon juice preserved by hyperbaric storage at room temperature compared to refrigeration. LWT Food Sci Technol 72:78–80

    Article  CAS  Google Scholar 

  98. Préstamo G, Arroyo G (1998) High hydrostatic pressure effects on vegetable structure. J Food Sci 63(5):878–881

    Article  Google Scholar 

  99. Queirós RP, Rainho D, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA (2015) High pressure and thermal pasteurization effects on sweet cherry juice microbiological stability and physicochemical properties. High Pressure Res 35(1):69–77

    Article  CAS  Google Scholar 

  100. Queiroz C, Moreira CFF, Lavinas FC, Lopes MLM, Fialho E, Valente-Mesquita VL (2010) Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice. High Pressure Res 30(4):507–513

    Article  CAS  Google Scholar 

  101. Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68(1):254–259

    Article  CAS  Google Scholar 

  102. Rodríguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. International Food Policy Research Institute (IFPRI), Washington, DC

  103. Sánchez-Moreno C, Plaza L, De Ancos B, Cano MP (2003) Vitamin C, provitamin A carotenoids, and other carotenoids in high-pressurized orange juice during refrigerated storage. Journal of the Agricultural and Food Chemistry 51(3):647–653

    Article  CAS  Google Scholar 

  104. Sánchez-Moreno C, Plaza L, de Ancos B, Cano MP (2006) Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. J Sci Food Agric 86(2):171–179

    Article  CAS  Google Scholar 

  105. Sánchez C, Baranda AB, Martinez de Marañón I (2014) The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables. Food Chem 163:37–45

    Article  CAS  Google Scholar 

  106. Sancho F, Lambert Y, Demazeau G, Largeteau A, Bouvier J-M, Narbonne J-F (1999) Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. J Food Eng 39(3):247–253

    Article  Google Scholar 

  107. Sastry SK (2016) Toward a philosophy and theory of volumetric nonthermal processing. J Food Sci. 81(6):E1431–E1446

  108. Schlüter O, Foerster J, Geyer M, Knorr D, Herppich WB (2009) Characterization of high-hydrostatic-pressure effects on fresh produce using chlorophyll fluorescence image analysis. Food Bioprocess Technol 2(3):291–299

    Article  CAS  Google Scholar 

  109. Schreck S, Dörnenburg H, Knorr D (1996) Evaluation of hydrogen peroxide production in tomato (Lycopersicon esculentum) suspension cultures as a stress reaction to high pressure treatment. Food Biotechnol 10(2):163–171

    Article  CAS  Google Scholar 

  110. Segovia-Bravo KA, Guignon B, Bermejo-Prada A, Sanz PD, Otero L (2012) Hyperbaric storage at room temperature for food preservation: a study in strawberry juice. Innovative Food Sci Emerg Technol 15:14–22

    Article  Google Scholar 

  111. Serment-Moreno V, Barbosa-Cánovas G, Torres JA, Welti-Chanes J (2014) High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Engineering Reviews 6(3):56–88

    Article  CAS  Google Scholar 

  112. Serment-Moreno V, Fuentes C, Barbosa-Cánovas G, Torres JA, Welti-Chanes J (2015) Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food Bioprocess Technol 8(6):1244–1257

    Article  CAS  Google Scholar 

  113. Serment-Moreno V, Fuentes C, Guerrero-Beltrán JÁ, Torres JA & Welti-Chanes J (2017a) A Gompertz model approach to microbial inactivation kinetics by high pressure processing (HPP) incorporating the initial counts, microbial quantification limit and come-up time effects. Food and Bioprocess Technology. Submitted June 2016

  114. Serment-Moreno V, Fuentes C, Torres JA & Welti-Chanes J (2017b) Gompertz model approach to microbial inactivation kinetics by high pressure processing (HPP). Model selection and experimental validation. Journal of Food Science. Submitted September 2016

  115. Serpen A, Gökmen V (2007) Reversible degradation kinetics of ascorbic acid under reducing and oxidizing conditions. Food Chem 104(2):721–725

    Article  CAS  Google Scholar 

  116. Spinner J (2014) Hiperbaric ‘can’t complain’ about growth in HPP market. Food Production Daily. Available at http://www.foodproductiondaily.com/Processing/Hiperbaric-can-t-complain-about-growth-in-HPP-market. Accessed 2014–05-12 2014.

  117. Su G, Zhu S, Xu M, Ramaswamy HS, Lin Y, Yu Y (2016) Pressure degradation kinetics of anthocyanin pigment and visual color of Chinese bayberry juice. Int J Food Prop 19(2):443–453

    Article  CAS  Google Scholar 

  118. Suthanthangjai W, Kajda P, Zabetakis I (2005) The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chem 90(1–2):193–197

    Article  CAS  Google Scholar 

  119. Tangwongchai R, Ledward DA, Ames JM (2000) Effect of high-pressure treatment on the texture of cherry tomato. J Agric Food Chem 48(5):1434–1441

    Article  CAS  Google Scholar 

  120. Tao Y, Wu D, Sun D-W, Górecki A, Błaszczak W, Fornal J, Jeliński T (2013) Quantitative and predictive study of the evolution of wine quality parameters during high hydrostatic pressure processing. Innovative Food Sci Emerg Technol 20:81–90

    Article  CAS  Google Scholar 

  121. Terefe NS, Kleintschek T, Gamage T, Fanning KJ, Netzel G, Versteeg C, Netzel M (2013) Comparative effects of thermal and high pressure processing on phenolic phytochemicals in different strawberry cultivars. Innovative Food Sci Emerg Technol 19:57–65

    Article  CAS  Google Scholar 

  122. Tola YB, Ramaswamy HS (2013) Evaluation of high pressure (HP) treatment for rapid and uniform pH reduction in carrots. J Food Eng 116(4):900–909

    Article  CAS  Google Scholar 

  123. Tola YB, Ramaswamy HS (2015) Temperature and high pressure stability of lycopene and vitamin C of watermelon juice. Afr J Food Sci 9(5):351–358

    Article  CAS  Google Scholar 

  124. Torres B, Tiwari BK, Patras A, Cullen PJ, Brunton N, O'Donnell CP (2011) Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Sci Emerg Technol 12(2):93–97

    Article  CAS  Google Scholar 

  125. Torres JA, Velázquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67(1–2):95–112

    Article  Google Scholar 

  126. Trejo Araya XI, Hendrickx M, Verlinden BE, Van Buggenhout S, Smale NJ, Stewart C, John Mawson A (2007) Understanding texture changes of high pressure processed fresh carrots: a microstructural and biochemical approach. J Food Eng 80(3):873–884

    Article  Google Scholar 

  127. U. S. Food and Drug Administration (2014) Kinetics of microbial inactivation for alternative food processing technologies—high pressure processing. United States Food and Drug Administration, Silver Spring, MD.

  128. Van den Broeck I, Ludikhuyze L, Weemaes C, Van Loey A, Hendrickx M (1998) Kinetics for isobaric–isothermal degradation of L-ascorbic acid. J Agric Food Chem 46(5):2001–2006

    Article  CAS  Google Scholar 

  129. Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes JE, Pérez-Won M, Briones-Labarca V, Morales-Castro J (2012) Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Sci Emerg Technol 13:13–22

    Article  CAS  Google Scholar 

  130. Vargas-Ortiz MA, De la Cruz-Medina J, Espinosa de los Monteros JJ, Oliart-Ros RM, Rebolledo-Martinez A, Ramírez JA, García HS (2013) Effect of high hydrostatic pressure on the physiology of Manila mango. Plant Foods Hum Nutr 68(2):137–144

    Article  CAS  Google Scholar 

  131. Varma S, Karwe Mukund V, Lee T-C (2010) Effect of high hydrostatic pressure processing on lycopene isomers. Int J Food Eng 6(5)

  132. Vázquez-Gutiérrez JL, Hernando I, Quiles A (2013) Changes in tannin solubility and microstructure of high hydrostatic pressure–treated persimmon cubes during storage at 4 °C. Eur Food Res Technol 237(1):9–17

    Article  CAS  Google Scholar 

  133. Vazquez-Gutierrez JL, Plaza L, Hernando I, Sanchez-Moreno C, Quiles A, de Ancos B, Cano MP (2013) Changes in the structure and antioxidant properties of onions by high pressure treatment. Food & Function 4(4):586–591

    Article  CAS  Google Scholar 

  134. Vázquez-Gutiérrez JL, Quiles A, Hernando I, Pérez-Munuera I (2011) Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biol Technol 61(2–3):137–144

    Article  CAS  Google Scholar 

  135. Vázquez-Gutiérrez JL, Quiles A, Vonasek E, Jernstedt JA, Hernando I, Nitin N & Barrett DM (2016) High hydrostatic pressure as a method to preserve fresh-cut Hachiya persimmons: a structural approach. Food Sci Technol Int. 22(8):1–11

  136. Vega-Gálvez A, Uribe E, Perez M, Tabilo-Munizaga G, Vergara J, Garcia-Segovia P, Lara E, Di Scala K (2011) Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of Aloe vera (Aloe barbadensis Miller) gel. LWT Food Sci Technol 44(2):384–391

    Article  CAS  Google Scholar 

  137. Verbeyst L, Bogaerts R, Plancken I, Hendrickx M, Loey A (2013) Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruit. Food Bioprocess Technol 6(4):1015–1023

    Article  CAS  Google Scholar 

  138. Verbeyst L, Crombruggen KV, Van der Plancken I, Hendrickx M, Van Loey A (2011) Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J Food Eng 105(3):513–521

    Article  CAS  Google Scholar 

  139. Verbeyst L, Oey I, Van der Plancken I, Hendrickx M, Van Loey A (2010) Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem 123(2):269–274

    Article  CAS  Google Scholar 

  140. Wang Y, Liu F, Cao X, Chen F, Hu X, Liao X (2012) Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Sci Emerg Technol 16:326–334

    Article  CAS  Google Scholar 

  141. Welti-Chanes J, San Martín-González F, Guerrero-Beltrán JA & Barbosa-Cánovas G (2006) Water and biological structures at high pressure. In: Buera MdP, Welti-Chanes J, Lillford PJ & Corti HR (eds) Water properties, pharmaceutical, and biological materials. Food Preservation Technology. CRC Press, Boca Ratón, FL. pp 205–231

  142. Woolf AB, Wibisono R, Farr J, Hallett I, Richter L, Oey I, Wohlers M, Zhou J, Fletcher GC, Requejo-Jackman C (2013) Effect of high pressure processing on avocado slices. Innovative Food Sci Emerg Technol 18:65–73

    Article  CAS  Google Scholar 

  143. Yi J, Feng H, Bi J, Zhou L, Zhou M, Cao J, Li J (2016) High hydrostatic pressure induced physiological changes and physical damages in asparagus spears. Postharvest Biol Technol 118:1–10

    Article  CAS  Google Scholar 

  144. Yu Y, Lin Y, Zhan Y, He J, Zhu S (2013) Effect of high pressure processing on the stability of anthocyanin, ascorbic acid and color of Chinese bayberry juice during storage. J Food Eng 119(3):701–706

    Article  CAS  Google Scholar 

  145. Yuan L, Lu L-x, Y-l T, C-f G (2016) Weibull kinetic modeling and nutritional effects of high-hydrostatic-pressure sterilization of soft-packing boiled bamboo shoots. Food Sci Biotechnol 25(2):469–475

    Article  CAS  Google Scholar 

  146. Zhang L, Yao J, Zhang Y, Liao X, Chen F, Hu X (2015) Microstructural and morphological behaviors of asparagus lettuce cells subject to high pressure processing. Food Res Int 71:174–183

    Article  Google Scholar 

  147. Zulkurnain M, Maleky F & Balasubramaniam VM (2016) High pressure processing effects on lipids thermophysical properties and crystallization kinetics. Food Engineering Reviews. 8(4):393–413

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel A. Jacobo-Velázquez, José Antonio Torres or Jorge Welti-Chanes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serment-Moreno, V., Jacobo-Velázquez, D.A., Torres, J.A. et al. Microstructural and Physiological Changes in Plant Cell Induced by Pressure: Their Role on the Availability and Pressure-Temperature Stability of Phytochemicals. Food Eng Rev 9, 314–334 (2017). https://doi.org/10.1007/s12393-017-9158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-017-9158-6

Keywords

Navigation