Skip to main content
Log in

On Completely Regular Codes

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2019

This article has been updated

Abstract

This work is a survey on completely regular codes. Known properties, relations with other combinatorial structures, and construction methods are considered. The existence problem is also discussed, and known results for some particular cases are established. In addition, we present several new results on completely regular codes with covering radius ρ = 2 and on extended completely regular codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 16 October 2019

    Abstract���We correct mistakes in the formulations of Theorem 19 and Proposition 17 of the original article, published in vol. 55, no. 1, 1���45.

References

  1. Shapiro, G.S. and Slotnik, D.L., On the Mathematical Theory of Error-Correcting Codes, IBM J. Res. Develop., 1959, vol. 3, no. 1, pp. 25–34.

    Article  MathSciNet  Google Scholar 

  2. Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., Uniformly Packed Codes, Probl. Peredachi Inf., 1971, vol. 7, no. 1, pp. 38–50 [Probl. Inf. Transm. (Engl. Transl.), 1971, vol. 7, no. 1, pp. 30–39].

    MathSciNet  MATH  Google Scholar 

  3. Delsarte, P., An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Suppl., 1973, no. 10.

  4. Goethals, J.-M. and van Tilborg, H.C.A., Uniformly Packed Codes, Philips Res. Rep., 1975, vol. 30, pp. 9–36.

    MathSciNet  MATH  Google Scholar 

  5. van Tilborg, H.C.A., Uniformly Packed Codes, PhD Thesis, Tech. Univ. Eindhoven, The Netherlands, 1976.

    Google Scholar 

  6. Solé, P., Completely Regular Codes and Completely Transitive Codes, Discrete Math., 1990, vol. 81, no. 2, pp. 193–201.

    Article  MathSciNet  MATH  Google Scholar 

  7. Giudici, M., Completely Transitive Codes in Hamming Graphs, PhD Thesis, Univ. of Western Australia, Perth, Australia, 1998.

    MATH  Google Scholar 

  8. Giudici, M. and Praeger, C.E., Completely Transitive Codes in Hamming Graphs, European J. Combin., 1999, vol. 20, no. 7, pp. 647–662.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gillespie, N.I. and Praeger, C.E., New Characterisations of the Nordstrom–Robinson Codes, Bull. London Math. Soc., 2017, vol. 49, no. 2, pp. 320–330.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brouwer, A.E., Cohen, A.M., and Neumaier, A., Distance-Regular Graphs, Berlin: Springer, 1989.

    Book  MATH  Google Scholar 

  11. van Dam, E.R., Koolen, J.H., and Tanaka, H., Distance-Regular Graphs, Electron. J. Combin., 2016, Dynamic Survey DS22 (156 pp.).

  12. Koolen, J., Krotov, D., and Martin, B., Completely Regular Codes, 2016. Available at https://sites.google.com/site/completelyregularcodes.

  13. Koolen, J.H., Lee, W.S., Martin, W.J., and Tanaka, H., Arithmetic Completely Regular Codes, Discrete Math. Theor. Comput. Sci., 2016, vol. 17, no. 3, pp. 59–76.

    MathSciNet  MATH  Google Scholar 

  14. Tietäväinen, A., On the Nonexistence of Perfect Codes over Finite Fields, SIAM J. Appl. Math., 1973, vol. 24, no. 1, pp. 88–96.

    Article  MathSciNet  Google Scholar 

  15. Zinoviev, V.A. and Leont’ev, V.K., On Non-existence of Perfect Codes over Galois Fields, Probl. Upravlen. Teor. Inform., 1973, vol. 2, no. 2, pp. 123–132 [Probl. Control Inf. Theory (Engl. Transl.), 1973, vol. 2, no. 2, pp. 16–24].

    MathSciNet  Google Scholar 

  16. Borges, J. and Rifà, J., On the Nonexistence of Completely Transitive Codes, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 1, pp. 279–280.

    Article  MathSciNet  MATH  Google Scholar 

  17. Borges, J., Rifà, J., and Zinoviev, V., Nonexistence of Completely Transitive Codes with Error-Correcting Capability e < 3, IEEE Trans. Inform. Theory, 2001, vol. 47, no. 4, pp. 1619–1621.

    Article  MathSciNet  MATH  Google Scholar 

  18. Neumaier, A., Completely Regular Codes, Discrete Math., 1992, vol. 106/107, pp. 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  19. Borges, J., Rifà, J., and Zinoviev, V.A., On Non-antipodal Binary Completely Regular Codes, Discrete Math. 2008, vol. 308, no. 16, pp. 3508–3525.

    Article  MathSciNet  MATH  Google Scholar 

  20. Avgustinovich, S.V., Krotov, D.S., and Vasil’eva, A.Yu., Completely Regular Codes in the Infinite Hexagonal Grid, Sib. Electron. Mat. Izv., 2016, vol. 13, pp. 987–1016. Available at http://semr.math.nsc.ru/v13/p987-1016.pdf.

    MathSciNet  MATH  Google Scholar 

  21. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    Google Scholar 

  22. Brouwer, A.E., A Note on Completely Regular Codes, Discrete Math., 1990, vol. 83, no. 1, pp. 115–117.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lindström, K., All Nearly Perfect Codes Are Known, Inform. Control, 1977, vol. 35, no. 1, pp. 40–47.

    Article  MathSciNet  MATH  Google Scholar 

  24. Bassalygo, L.A., Zaitsev, G.V., and Zinoviev, V.A., Uniformly Packed Codes, Probl. Peredachi Inf., 1974, vol. 10, no. 1, pp. 9–14 [Probl. Inf. Transm. (Engl. Transl.), 1974, vol. 10, no. 1, pp. 6–9].

    MathSciNet  MATH  Google Scholar 

  25. Beth, T., Jungnickel, D., and Lenz, H., Design Theory, 2 vols., Cambridge: Cambridge Univ. Press, 1999, 2nd ed.

    Book  MATH  Google Scholar 

  26. Blake, I.F. and Mullin, R.C., The Mathematical Theory of Coding, New York: Academic, 1975.

    MATH  Google Scholar 

  27. Hughes, D.R. and Piper, F.C., Design Theory, Cabmridge: Cambridge Univ. Press, 1985.

    Book  MATH  Google Scholar 

  28. Handbook of Combinatorial Designs, Colbourn, C.J. and Dinitz, J.H., Eds., Boca Raton: Chapman & Hall, 2007, 2nd ed.

    MATH  Google Scholar 

  29. Magliveras, S.S. and Leavitt, D.W., Simple Six Designs Exist, Congr. Numer. 1983, vol. 40, pp. 195–205.

    MathSciNet  MATH  Google Scholar 

  30. Teirlinck, L., Non-trivial t-Designs without Repeated Blocks Exist for All t, Discrete Math., 1987, vol. 65, no. 3, pp. 301–311.

    Article  MathSciNet  MATH  Google Scholar 

  31. Assmus, E.F., Jr., Goethals, J.-M., and Mattson, H.F., Jr., Generalized t-Designs and Majority Decoding of Linear Codes, Inform. Control, 1976, vol. 32, no. 1, pp. 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zinoviev, V.A. and Rifàa, J., On New Completely Regular q-ary Codes, Probl. Peredachi Inf., 2007, vol. 43, no. 2, pp. 34–51 [Probl. Inf. Transm. (Engl. Transl.), 2007, vol. 43, no. 2, pp. 97–112].

    MathSciNet  Google Scholar 

  33. Bassalygo, L.A. and Zinoviev, V.A., Remark on Uniformly Packed Codes, Probl. Peredachi Inf., 1977, vol. 13, no. 3, pp. 22–25 [Probl. Inf. Transm. (Engl. Transl.), 1977, vol. 13, no. 3, pp. 178–180].

    MathSciNet  Google Scholar 

  34. Rifà, J. and Zinoviev, V.A., New Completely Regular q-ary Codes Based on Kronecker Products, IEEE Trans. Inform. Theory, 2011, vol. 56, no. 1, pp. 266–272.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rifà, J. and Zinoviev, V.A., On Lifting Perfect Codes, IEEE Trans. Inform. Theory, 2011, vol. 57, no. 9, pp. 5918–5925.

    Article  MathSciNet  MATH  Google Scholar 

  36. Rifà, J. and Zinoviev, V.A., On a Family of Binary Completely Transitive Codes with Growing Covering Radius, Discrete Math., 2014, vol. 318, pp. 48–52.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gillespie, N.I. and Praeger, C.E., Uniqueness of Certain Completely Regular Hadamard Codes, J. Com-bin. Theory Ser. A, 2013, vol. 120, no. 7, pp. 1394–1400.

    Article  MathSciNet  MATH  Google Scholar 

  38. Borges, J., Rifà, J., and Zinoviev, V.A., New Families of Completely Regular Codes and Their Corresponding Distance Regular Coset Graphs, Des. Codes Cryptogr., 2014, vol. 70, no. 1–2, pp. 139–148.

    Article  MathSciNet  MATH  Google Scholar 

  39. Borges, J., Rifà, J., and Zinoviev, V.A., Families of Nested Completely Regular Codes and Distance-Regular Graphs, Adv. Math. Commun., 2015, vol. 9, no. 2, pp. 233–246.

    Article  MathSciNet  MATH  Google Scholar 

  40. Calderbank, A.R. and Goethals, J.-M., Three-Weight Codes and Association Schemes, Philips J. Res., 1984, vol. 39, no. 4–5, pp. 143–152.

    MathSciNet  MATH  Google Scholar 

  41. Calderbank, A.R. and Goethals, J.-M., On a Pair of Dual Subschemes of the Hamming Scheme H n (q), European J. Combin., 1985, vol. 6, no. 2, pp. 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  42. Baker, R.D., van Lint, J.H., and Wilson, R.M., On the Preparata and Goethals Codes, IEEE Trans. Inform. Theory, 1983, vol. 29, no. 3, pp. 342–345.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., On the Duality of Preparata and Kerdock Codes, in Proc. 5th All-Union Conf. on Coding Theory, Moscow-Gorky, 1972, Part 2, pp. 55–58.

  44. Camion, P., Courteau, B., Delsarte, P., On r-Partition Designs in Hamming Spaces, Appl. Algebra Engrg. Commun. Comput., 1992, vol. 2, no. 3, pp. 147–162.

    Article  MathSciNet  MATH  Google Scholar 

  45. Brouwer, A.E., On Complete Regularity of Extended Codes, Discrete Math., 1993, vol. 117, no. 1–3, pp. 271–273.

    Article  MathSciNet  MATH  Google Scholar 

  46. Rifà, J. and Pujol, J., Completely Transitive Codes and Distance Transitive Graphs, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Proc. 9th Int. Sympos. AAECC-9, New Orleans, USA, Oct. 7–11, 1991), Mattson, H.F., Mora, T., and Rao, T.R.N., Eds., Lect. Notes Comp. Sci, vol. 539, Berlin: Springer, 1991, pp. 360–367.

    Chapter  Google Scholar 

  47. Livingstone, D. and Wagner, A., Transitivity of Finite Permutation Groups on Unordered Sets, Math. Z., 1965, vol. 90, no. 5, pp. 393–403.

    Article  MathSciNet  MATH  Google Scholar 

  48. Berger, T.P., The Automorphism Group of Double-Error-Correcting BCH Codes, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 538–542.

    Article  MathSciNet  MATH  Google Scholar 

  49. Godsil, C.D. and Praeger, C.E., Completely Transitive Designs, arXiv:1405.2176 [math.CO], 2014.

  50. Bannai, E., Codes in Bipartite Distance-Regular Graphs, J. London Math. Soc. (2), 1977, vol. 16, no. 2, pp. 197–202.

    Article  MathSciNet  MATH  Google Scholar 

  51. Hammond, P., On the Non-existence of Perfect and Nearly Perfect Codes, Discrete Math., 1982, vol. 39, no. 1, pp. 105–109.

    Article  MathSciNet  MATH  Google Scholar 

  52. Etzion, T., On the Nonexistence of Perfect Codes in the Johnson Scheme, SIAM J. Discrete Math., 1996, vol. 9, no. 2, pp. 201–209.

    Article  MathSciNet  MATH  Google Scholar 

  53. Etzion, T. and Schwarz, M., Perfect Constant-Weight Codes, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 9, pp. 2156–2165.

    Article  MathSciNet  MATH  Google Scholar 

  54. Etzion, T., Configuration Distribution and Designs of Codes in the Johnson Scheme, J. Combin. Des., 2007, vol. 15, no. 1, pp. 15–34.

    Article  MathSciNet  MATH  Google Scholar 

  55. Shimabukuro, O., On the Nonexistence of Perfect Codes in J (2w + p 2, w), Ars Combin., 2005, vol. 75, pp. 129–134.

    MathSciNet  MATH  Google Scholar 

  56. Gordon, D.M., Perfect Single Error-Correcting Codes in the Johnson Scheme, IEEE Trans. Inform. Theory, 2006, vol. 52, no. 10, pp. 4670–4672.

    Article  MathSciNet  MATH  Google Scholar 

  57. Kummer, E.E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 1852, vol. 44, pp. 93–146.

    MathSciNet  Google Scholar 

  58. Loxton, J.H., Some Problems Involving Powers of Integers, Acta Arith., 1986, vol. 46, no. 2, pp. 113–123.

    Article  MathSciNet  MATH  Google Scholar 

  59. Bernstein, D.J., Detecting Perfect Powers in Essentially Linear Time, Math. Comp., 1998, vol. 67, no. 223, pp. 1253–1283.

    Article  MathSciNet  MATH  Google Scholar 

  60. Roos, C., A Note on the Existence of Perfect Constant Weight Codes, Discrete Math., 1983, vol. 47, no. 1, pp. 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  61. Movsisyan, G.L., Perfect Codes in Johnson Schemes, Vestn. Mosk. Gos. Univ. Ser. 15: Vychisl. Matem. Kibern., 1982, no. 1, pp. 64–69.

  62. Movsisyan, G.L., Perfect Constant-Weight Codes and Steiner Systems, Probl. Peredachi Inf., 1983, vol. 19, no. 2, pp. 109–112.

    MATH  Google Scholar 

  63. Movsisian, G.L. and Margarian, Zh.G., D-Representing Code Problem Solution, Fundamentals of Computation Theory (Proc. Int. Conf. FCT’87, Kazan, USSR, June 22–26, 1987), Budach, L., Bukharajev, R.G., and Lupanov, O.B., Eds., Lect. Notes Comp. Sci., vol. 278, Berlin: Springer, 1987, pp. 328–331.

    Google Scholar 

  64. Leont’ev, V.K., Movsisyan, G.L., and Margaryan, Zh.G., Constant Weight Perfect and D-Representable Codes, Proc. Yerevan State Univ. Phys. Math. Sci., 2012, no. 1, pp. 16–19.

  65. Mogil’nykh, I.Yu., On the Regularity of Perfect 2-Colorings of the Johnson Graph, Probl. Peredachi Inf., 2007, vol. 43, no. 4, pp. 37–44 [Probl. Inf. Transm. (Engl. Transl.), 2007, vol. 43, no. 4, pp. 303–309].

    MathSciNet  MATH  Google Scholar 

  66. Mogil’nykh, I.Yu., On Nonexistence of Some Perfect 2-Colorings of Johnson Graphs, Diskretn. Anal. Issled. Oper., 2009, vol. 16, no. 5, pp. 52–68.

    MathSciNet  MATH  Google Scholar 

  67. Avgustinovich, S.V., and Mogil’nykh, I.Yu., Perfect 2-Colorings of the Johnson Graphs J (8, 3) and J (8, 4), Diskretn. Anal. Issled. Oper., 2010, vol. 17, no. 2, pp. 3–19.

    MathSciNet  MATH  Google Scholar 

  68. Martin, W.J., Completely Regular Designs of Strength One, J. Algebraic Combin., 1994, vol. 3, no. 2, pp. 177–185.

    Article  MathSciNet  MATH  Google Scholar 

  69. Martin, W.J., Completely Regular Designs, J. Combin. Des., 1998, vol. 6, no. 4, pp. 261–273.

    Article  MathSciNet  MATH  Google Scholar 

  70. Meyerowitz, A.D., Cycle-Balance Conditions for Distance-Regular Graphs, Discrete Math., 2003, vol. 264, no. 1–3, pp. 149–165.

    Article  MathSciNet  MATH  Google Scholar 

  71. Godsil, C., Personal communication to W. Martin [69].

  72. Avgustinovich, S.V., and Mogilnykh, I.Yu., Induced Perfect Colorings, Sib. Electron. Mat. Izv., 2011, vol. 8, pp. 310–316. Available at http://semr.math.nsc.ru/v8/p310-316.pdf.

    MathSciNet  MATH  Google Scholar 

  73. Delorme, C., Régularité métrique forte, Rapport de Recherche, Univ. Paris Sud, Orsay, France, 1983, no. 156.

    Google Scholar 

  74. Godsil, C., Association Schemes, Univ. of Waterloo, Canada, 2005. Available at https://www.math.uwaterloo.ca/∼cgodsil/pdfs/assoc2.pdf.

    MATH  Google Scholar 

  75. Godsil, C.D., Equitable Partitions, Combinatorics, Paul Erdős is Eighty, Miklós, D., Sós, V.T., and Szónyi, T., Eds., Budapest: János Bolyai Math. Soc., 1993, vol. 1. pp. 173–192.

    Google Scholar 

  76. Rifà, J. and Zinoviev, V.A., On Completely Regular Codes from Perfect Codes, in Proc. 10th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-10), Zvenigorod, Russia, Sept. 3–9, 2006, pp. 225–229.

  77. Ivanov, A.A., Liebler, R.A., Penttila, T., and Praeger, C.E., Antipodal Distance-Transitive Covers of Complete Bipartite Graphs, European J. Combin., 1997, vol. 18, no. 1, pp. 11–33.

    Article  MathSciNet  MATH  Google Scholar 

  78. Rifà, J. and Zinoviev, V.A., Completely Regular Codes with Different Parameters Giving the Same Distance-Regular Coset Graphs, Discrete Math., 2017, vol. 340, no. 7, pp. 1649–1656.

    Article  MathSciNet  MATH  Google Scholar 

  79. Rifà, J. and Zinoviev, V.A., On a Class of Binary Linear Completely Transitive Codes with Arbitrary Covering Radius, Discrete Math., 2009, vol. 309, no. 16, pp. 5011–5016.

    Article  MathSciNet  MATH  Google Scholar 

  80. Borges, J., Rifà, J., and Zinoviev, V., Completely Regular Codes by Concatenating Hamming Codes, Adv. Math. Commun., 2018, vol. 12, no. 2, pp. 337–349.

    Article  MathSciNet  MATH  Google Scholar 

  81. Borges, J., Rifà, J., and Zinoviev, V., On New Infinite Families of Completely Regular and Completely Transitive Binary Codes, in Proc. 16th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-16), Svetlogorsk, Russia, Sept. 2–9, 2018, pp. 7–8.

  82. Borges, J., Rifà, J., and Zinoviev, V.A., On q-ary Linear Completely Regular Codes with p =2 and Antipodal Dual, Adv. Math. Commun., 2010, vol. 4, no. 4, pp. 567–578.

    Article  MathSciNet  MATH  Google Scholar 

  83. Fon-Der-Flaass, D.G., A Bound on Correlation Immunity, Sib. Electron. Mat. Izv., 2007, vol. 4, pp. 133–135. Available at http://semr.math.nsc.ru/v4/p133-135.pdf.

    MathSciNet  MATH  Google Scholar 

  84. Fon-Der-Flaass, D.G., Perfect 2-Colorings of a Hypercube, Sibirsk. Mat. Zh., 2007, vol. 48, no. 4, pp. 923–930 [Siberian Math. J. (Engl. Transl.), 2007, vol. 48, no. 4, pp. 740–745].

    MathSciNet  MATH  Google Scholar 

  85. Fon-Der-Flaass, D.G., Perfect 2-Colorings of the 12-Cube That Attain the Bounds on Correlation Immunity, Sib. Electron. Mat. Izv., 2007, vol. 4, pp. 292–295. Available at http://semr.math.nsc.ru/v4/p292-295.pdf.

    MathSciNet  MATH  Google Scholar 

  86. Tarannikov, Y.V., On Resilient Boolean Functions with Maximal Possible Nonlinearity, Progress in Cryptology — INDOCRYPT 2000 (Proc. 1st Int. Conf. in Cryptology in India, Calcutta, India, Dec. 10–13, 2000), Roy, B.K. and Okamoto, E., Eds., Lect. Notes Comp. Sci., vol. 1977, Berlin: Springer, 2000, pp. 19–30.

    Google Scholar 

  87. Calderbank, R. and Kantor, W.M., The Geometry of Two-Weight Codes, Bull. London Math. Soc., 1986, vol. 18, no. 2, pp. 97–122.

    Article  MathSciNet  MATH  Google Scholar 

  88. Bush, K.A., Orthogonal Arrays of Index Unity, Ann. Math. Statist., 1952, vol. 23, no. 3, pp. 426–434.

    Article  MathSciNet  MATH  Google Scholar 

  89. Delsarte, P., Two-Weight Linear Codes and Strongly Regular Graphs, MBLE Research Lab. Report, Brussels, Belgium, 1971, no. R160.

  90. Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., A Class of Maximum Equidistant Codes, Probl. Peredachi Inf., 1969, vol. 5, no. 2, pp. 84–87 [Probl. Inf. Transm. (Engl. Transl.), 1969, vol. 5, no. 2, pp. 65–68].

    MathSciNet  MATH  Google Scholar 

  91. Carlet, C., Charpin, P., and Zinoviev, V., Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems, Des. Codes Cryptogr., 1998, vol. 15, no. 2, pp. 125–156.

    Article  MathSciNet  MATH  Google Scholar 

  92. Gold, R., Maximal Recursive Sequences with 3-Valued Recursive Cross-Correlation Functions, IEEE Trans. Inform. Theory, 1968, vol. 14, no. 1, pp. 154–156.

    Article  MATH  Google Scholar 

  93. Kasami, T., The Weight Enumerators for Several Classes of Subcodes of the 2nd Order Binary Reed-Muller Codes, Inform. Control, 1971, vol. 18, no. 4, pp. 369–394.

    Article  MATH  Google Scholar 

  94. Welch, L.R., Trace Mappings in Finite Fields and Shift Register Cross-Correlation Properties, Dept. Electrical Engineering Report, Univ. of Southern California, Los Angeles, 1969.

  95. Canteaut, A., Charpin, P., and Dobbertin, H., Binary m-Sequences with Three-Valued Crosscorrelation: A Proof of Welch’s Conjecture, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 1, pp. 4–8.

    Article  MathSciNet  MATH  Google Scholar 

  96. Hollmann, H.D.L. and Xiang, Q., A Proof of the Welch and Niho Conjectures on Cross-Correlations of Binary m-Sequences, Finite Fields Appl., 2001, vol. 7, no. 2, pp. 253–286.

    Article  MathSciNet  MATH  Google Scholar 

  97. Dobbertin, H., Almost Perfect Nonlinear Power Functions over GF(2n): The Niho Case, Inform. and Comput., 1999, vol. 151, no. 1–2, pp. 57–72.

    Article  MathSciNet  MATH  Google Scholar 

  98. Beth, T. and Ding, C., On Almost Perfect Nonlinear Permutations, Advances in Cryptology–EURO-CRYPT’93 (Proc. Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, May 23–27, 1993), Helleseth, T., Ed., Lect. Notes Comp. Sci., vol. 765, Berlin: Springer, 1994, pp. 65–76.

    Google Scholar 

  99. Dobbertin, H., Almost Perfect Nonlinear Power Functions on GF(2n): A New Case for n Divisible by 5, Finite Fields and Applications, Jungnickel, D. and Niederreiter, H., Eds., Berlin: Springer, 2001, pp. 113–121.

    Chapter  Google Scholar 

  100. Budaghyan, L., Carlet, C., and Pott, A., New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials, IEEE Trans. Inform. Theory, 2006, vol. 52, no. 3, pp. 1141–1152.

    Article  MathSciNet  MATH  Google Scholar 

  101. Berger, T.P., Canteaut, A., Charpin, P., and Laigle-Chapuy, Y., On Almost Perfect Nonlinear Functions over \(F_2^n\), IEEE Trans. Inform. Theory, 2006, vol. 52, no. 9, pp. 4160–4170.

    Article  MathSciNet  MATH  Google Scholar 

  102. Carlet, C., Boolean Functions for Cryptography and Error-Correcting Codes, ch. 8 of Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Crama, Y. and Hammer, P.L., Eds., Cambridge: Cambridge Univ. Press, 2010, pp. 257–397.

  103. Dumer, I.I. and Zinoviev, V.A., Some New Maximal Codes over Galois Field GF(4), Probl. Peredachi Inf., 1978, vol. 14, no. 3, pp. 24–34 [Probl. Inf. Transm. (Engl. Transl.), 1978, vol. 14, no. 3, pp. 174–181].

    MATH  Google Scholar 

  104. Shi, M., Krotov, D.S., and Solé, P., A New Distance-Regular Graph of Diameter 3 on 1024 Vertices, arXiv:1806.07069v3 [math.CO], 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Borges, J. Rifà or V. A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J., Rifà, J. & Zinoviev, V.A. On Completely Regular Codes. Probl Inf Transm 55, 1–45 (2019). https://doi.org/10.1134/S0032946019010010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946019010010

Navigation