Skip to main content

Advertisement

Log in

Fabrication of Hybrid Fe2V4O13/ZnO Heterostructure for Effective Mineralization of Aqueous Methyl Orange Solution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new nanocomposite composed of Fe2V4O13 and ZnO was synthesized using sol–gel technique. The properties of this compound were analyzed by performing X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray (EDX) spectrometry and elemental color mapping, high-resolution transmission electron microscopy (HR-TEM), ultraviolet–visible diffuse reflectance spectra (UV–Vis-DRS), and photoluminescence (PL) spectra measurements. A coupled semiconductor system was developed to enhance the photocatalytic efficiency of ZnO. The photocatalytic efficiency of 11 wt% Fe2V4O13/ZnO under UV-A light irradiation was ~ 1.25 times higher than that exhibited by bare ZnO. The enhanced photodegradation was ascribed to the high efficiency of charge separation of the e/h+ pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Katsumata, T. Sakai, T. Suzuki, and S. Kaneco (2014). Ind. Eng. Chem. Res.53, 8018–8025.

    Article  CAS  Google Scholar 

  2. H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, and S. Wang (2014). J. Phys. Chem. C118, 14379–14387.

    Article  CAS  Google Scholar 

  3. J. Fu, J. Yu, C. Jiang, and B. Cheng (2017). Adv. Energy Mater.8, 1701503.

    Article  CAS  Google Scholar 

  4. X. Hu, S. Lu, J. Tian, N. Wei, X. Song, X. Wang, and H. Cui (2018). Appl. Catal. B241, 329–337.

    Article  CAS  Google Scholar 

  5. Y. Li, Y. Xue, J. Tian, X. Song, X. Zhang, X. Wang, and H. Cui (2017). Sol. Energy Mater. Sol. Cells168, 100–111.

    Article  CAS  Google Scholar 

  6. J. Tian, X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, and H. Liu (2016). Sol. Energy Mater. Sol. Cells151, 7–13.

    Article  CAS  Google Scholar 

  7. X. Hu, H. Zhao, J. Tian, J. Gao, Y. Li, and H. Cui (2017). Sol. Energy Mater. Sol. Cells172, 108–116.

    Article  CAS  Google Scholar 

  8. B. K. Ghosh and N. N. Ghosh (2018). J. Nanosci. Nanotechnol.18, 3735–3758.

    Article  CAS  PubMed  Google Scholar 

  9. V. K. H. Bui, T. N. Pham, and Y. C. Lee (2019). J. Nanosci. Nanotechnol.19, 1069–1073.

    Article  CAS  PubMed  Google Scholar 

  10. P. M. Perillo and M. N. Atia (2018). Mater. Today Commun.17, 252–258.

    Article  CAS  Google Scholar 

  11. L. Wang, Z. Li, J. Chen, Y. Huang, H. Zhang, and H. Qiu (2019). Environ. Pollut.249, 801–811.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Li, B. P. Bastakoti, M. Imura, S. M. Hwang, Z. Sun, J. H. Kim, S. X. Dou, and Y. Yamauchi (2014). Chem. Eur. J.20, 6027–6032.

    Article  CAS  PubMed  Google Scholar 

  13. H. Oveisi, S. Rahighi, X. Jiang, Y. Nemoto, A. Beitollahi, S. Wakatsuki, and Y. Yamauchi (2010). Chem. Asian J.5, 1978–1983.

    Article  CAS  PubMed  Google Scholar 

  14. B. P. Bastakoti, Y. Li, M. Imura, N. Miyamoto, T. Nakato, T. Sasaki, and Y. Yamauchi (2015). Angew. Chem. Int. Edn.54, 4222–4225.

    Article  CAS  Google Scholar 

  15. P. Suppuraj, K. Thirumalai, S. Parthiban, M. Swaminathan, and I. Muthuvel (2019). J. Nanosci. Nanotechnol.19, 1–10.

    Article  CAS  Google Scholar 

  16. Y. Wang, H. Zhao, J. Gao, G. Zhao, Y. Zhang, and Y. Zhang (2012). J. Phys. Chem. C116, 7457–7463.

    Article  CAS  Google Scholar 

  17. N. N. Tusar, D. Maucec, M. Rangus, I. Arcon, M. Mazaj, M. Cotman, A. Pintar, and V. Kaucic (2012). Adv. Funct. Mater.22, 820–826.

    Article  CAS  Google Scholar 

  18. K. Maeda and T. E. Mallouk (2019). Bull. Chem. Soc. Jpn.92, 38–54.

    Article  CAS  Google Scholar 

  19. N. Roy, N. Suzuki, C. Terashima, and A. Fujishima (2019). Bull. Chem. Soc. Jpn.92, 178–192.

    Article  CAS  Google Scholar 

  20. H. Abe, J. Liu, and K. Ariga (2016). Mater. Today.19, 12–18.

    Article  CAS  Google Scholar 

  21. H. Miura, M. Nagao, S. Hosokawa, T. Shishido, M. Inoue, and K. Wada (2018). Bull. Chem. Soc. Jpn.91, 1397–1401.

    Article  CAS  Google Scholar 

  22. S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan (2016). Sci. Rep.6, 31641. https://doi.org/10.1038/srep31641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Liu, H. Liu, J. Yang, H. Zhai, X. Liu, and H. Jia (2019). Ceram. Int.45, 20133–20140.

    Article  CAS  Google Scholar 

  24. H. Liu, M. Li, J. Yang, C. Hu, J. Shang, and H. Zhai (2018). Mater. Res. Bull.106, 19–27.

    Article  CAS  Google Scholar 

  25. N. Sobana and M. Swaminathan (2007). Sol. Energy Mater. Sol. Cells91, 727–734.

    Article  CAS  Google Scholar 

  26. L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu, and S. P. Sun (2010). J. Hazard. Mater.179, 438–443.

    Article  CAS  PubMed  Google Scholar 

  27. J. S. Xie and Q. S. Wu (2010). Mater. Lett.64, 389–392.

    Article  CAS  Google Scholar 

  28. M. A. Behnajady, N. Modirshahla, and R. Hamzavi (2006). J. Hazard. Mater. B133, 226–232.

    Article  CAS  Google Scholar 

  29. I. Muthuvel, K. Gowthami, G. Thirunarayanan, P. Suppuraj, B. Krishnakumar, A. J. F. N. Sobral, and M. Swaminathan (2019). Int. J. Ind. Chem.10, 77–87.

    Article  CAS  Google Scholar 

  30. K. Gowthami, P. Suppuraj, G. Thirunarayanan, B. Krishnakumar, A. J. F. N. Sobral, M. Swaminathan, and I. Muthuvel (2018). Iran. Chem. Commun.6, 97–108.

    CAS  Google Scholar 

  31. S. Marikkani, J. V. Kumar, and V. Muthuraj (2019). Sol. Energy188, 849–856.

    Article  CAS  Google Scholar 

  32. I. Muthuvel, B. Krishnakumar, and M. Swaminathan (2014). Indian J. Chem.53A, 672–678.

    CAS  Google Scholar 

  33. K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta (2015). Mater. Res. Bull.63, 134–140.

    Article  CAS  Google Scholar 

  34. S. Bencic, B. Orel, A. Surca, and U. L. Stangar (2000). Sol. Energy68, 499–515.

    Article  CAS  Google Scholar 

  35. S. Z. Kang, T. Wu, X. Li, and J. Mu (2010). Colloids Surf. A369, 268–271.

    Article  CAS  Google Scholar 

  36. B. Krishnakumar, T. Imae, J. Miras, and J. Esquena (2014). Sep. Purif. Technol.132, 281–288.

    Article  CAS  Google Scholar 

  37. M. Zheng and J. Wu (2009). Appl. Surf. Sci.255, 5656–5661.

    Article  CAS  Google Scholar 

  38. S. Balachandran, S. G. Praveen, R. Velmurugan, and M. Swaminathan (2014). RSC Adv.4, 4353–4362.

    Article  CAS  Google Scholar 

  39. K. Foo, U. Hashim, K. Muhammad, and C. Voon (2014). Nanoscale Res. Lett.9, 429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. I. Ahemen, A. N. Amah, B. E. AttahDaniel, and A. Y. Fasasi (2014). Nanosci. Nanotechnol.4, 7–15.

    Google Scholar 

  41. C. Chen, J. Liu, P. Liu, and B. Yu (2011). Adv. Chem. Eng. Sci.1, 9–14.

    Article  CAS  Google Scholar 

  42. K. Sangeeta, C. Narendra Pal Singh, P. Arpita, A. Rakshit, and P. Pinki Bala (2015). Indian J. Chem.54A, 1057–1061.

    Google Scholar 

  43. A. Shokri and M. M. Ghazi (2016). Adv. Environ. Technol.2, 11–24.

    Google Scholar 

  44. H. Liu, Y. Hu, Z. Zhang, X. Liu, H. Jia, and B. Xu (2015). Appl. Surf. Sci.355, 644–652.

    Article  CAS  Google Scholar 

  45. H. Liu, H. Zhai, C. Hu, J. Yang, and Z. Liu (2017). Nanoscale Res. Lett.12, 466. https://doi.org/10.1186/s11671-017-2233-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, and W. Wang (2017). Sci. Rep.7, 3973. https://doi.org/10.1038/s41598-017-04398-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I. Muthuvel thanks financial support from the University Grants Commission (UGC), New Delhi, for providing research Grant (No. UGC Sanctioned Letter F.No-43-222/2014(SR)). This work was also supported by FCT Post-doc Grant (SFRH/BPD/86971/2012) to B. Krishnakumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Muthuvel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthami, K., Krishnakumar, B., Sobral, A.J.F.N. et al. Fabrication of Hybrid Fe2V4O13/ZnO Heterostructure for Effective Mineralization of Aqueous Methyl Orange Solution. J Clust Sci 31, 839–849 (2020). https://doi.org/10.1007/s10876-019-01691-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01691-9

Keywords

Navigation