Skip to main content
Log in

Topological lower bounds for arithmetic networks

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We prove that the depth of any arithmetic network for deciding membership in a semialgebraic set \({\Sigma \subset \mathbb{R}^{n}}\) is bounded from below by

$$c_1 \sqrt{ \frac{\log ({\rm b}(\Sigma))}{n}} -c_2 \log n,$$

where \({{\rm b}(\Sigma)}\) is the sum of the Betti numbers of \({\Sigma}\) with respect to “ordinary” (singular) homology, and c 1, c 2 are some (absolute) positive constants. This result complements the similar lower bound in Montaña et al. (Appl Algebra Engrg Comm Comput 7:41–51, 1996) for locally closed semialgebraic sets in terms of the sum of Borel–Moore Betti numbers.

We also prove that if \({\rho: \mathbb{R}^{n} \to \mathbb{R}^{n-r}}\) is the projection map, for some \({r=0, \ldots, n}\), then the depth of any arithmetic network deciding membership in \({\Sigma}\) is bounded by

$$\frac{c_1\sqrt{\log ({\rm b}(\rho(\Sigma)))}}{n} - c_2 \log n$$

for some positive constants c 1, c 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Bürgisser & F. Cucker (2005). Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré. In Complexity of Computations and Proofs (Jan Krajicek ed.), volume 13 of Quaderini di Matematica, 73–152.

  • Gabrielov A., Vorobjov N. (2005) Betti numbers of semialgebraic sets defined by quantifier-free formulae. Discrete Comput. Geom. 33(3): 395–401

    Article  MathSciNet  MATH  Google Scholar 

  • Gabrielov A., Vorobjov N. (2009) Approximation of definable sets by compact families, and upper bounds on homotopy and homology. J. London Math. Soc. 80(2): 493–496

    MathSciNet  MATH  Google Scholar 

  • A. Gabrielov & N. Vorobjov (2015). On topological lower bounds for algebraic computation trees. Found. Comput. Math., doi:10.1007/s10208-015-9283-7.

  • Gabrielov A., Vorobjov N., Zell T. (2004) Betti numbers of semialgebraic and sub-Pfaffian sets. J. London Math. Soc. 69(2): 27–43

    Article  MathSciNet  MATH  Google Scholar 

  • J. von zur Gathen (1986). Parallel arithmetic computations: a survey. In Proceedings of the 12th Symposium Bratislava, Czechoslovakia August 25-29, 1986 (J. Gruska, B. Rovan, J. Wiedermann eds.), 93–112. Springer Lecture Notes in Computer Science, 233.

  • Montaña J.L., Morais J.E., Pardo L.M. (1996) Lower bounds for arithmetic networks II: sum of Betti numbers. Appl. Algebra Engrg. Comm. Comput. 7: 41–51

    Article  MathSciNet  MATH  Google Scholar 

  • Montaña J.L., Pardo L.M. (1993) Lower bounds for arithmetic networks. Appl. Algebra Engrg. Comm. Comput. 4: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Yao A.C.C. (1997) Decision tree complexity and Betti numbers. J. Comput. Syst. Sci. 55: 36–43

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Vorobjov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielov, A., Vorobjov, N. Topological lower bounds for arithmetic networks. comput. complex. 26, 687–715 (2017). https://doi.org/10.1007/s00037-016-0145-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0145-8

Keywords

Subject classification

Navigation