Skip to main content
Log in

The time of ultimate recovery in Gaussian risk model

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We analyze the distance \(\mathcal {R}_{T}(u)\) between the first and the last passage time of {X(t) − ct : t ∈ [0, T]} at level u in time horizon T ∈ (0, ], where X is a centered Gaussian process with stationary increments and \(c\in {\mathbb {R}}\), given that the first passage time occurred before T. Under some tractable assumptions on X, we find Δ(u) and G(x) such that

$$\lim\limits_{u\to\infty}\mathbb{P} \left( \mathcal{R}_{T}(u)>{\Delta}(u)x \right)=G(x), $$

for x ≥ 0. We distinguish two scenarios: T < and T = , that lead to qualitatively different asymptotics. The obtained results provide exact asymptotics of the ultimate recovery time after the ruin in Gaussian risk model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, L., Dȩbicki, K., Hashorva, E., Luo, L.: On generalised Piterbarg constants. Comp. Meth. Appl. Prob. 20(1), 137–164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chesney, M., Jeanblanc-Picqué, M., Yor, M.: Brownian excursions and Parisian barrier options. Adv. Appl. Probab. 29(1), 165–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu, S., Yin, C.: Passage times for a spectrally negative lévy process with applications to risk theory. Bernoulli 11(3), 511–522 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dȩbicki, K., Hashorva, E., Ji, L.: Parisian ruin of self-similar Gaussian risk processes. J. Appl Probab. 52(3), 688–702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dȩbicki, K., Hashorva, E., Ji, L.: Parisian ruin over a finite-time horizon. Sci. China Math. 59(3), 557–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Dȩbicki, K., Hashorva, E., Liu, P.: Uniform tail approximation of homogenous functionals of Gaussian fields. Adv. Appl. Probab. 49, 1037–1066 (2017)

    Article  MathSciNet  Google Scholar 

  • Dȩbicki, K., Hashorva, E., Liu, P.: Extremes of γ-reflected Gaussian process with stationary increments. ESAIM Probab. Statist. 21, 495–535 (2017)

    Article  Google Scholar 

  • Dȩbicki, K., Kosiński, K.: On the infimum attained by the reflected fractional Brownian motion. Extremes 17(3), 431–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Dȩbicki, K., Liu, P.: Extremes of stationary Gaussian storage models. Extremes 19(2), 273–302 (2016)

    Article  MathSciNet  Google Scholar 

  • Dȩbicki, K.: Ruin probability for Gaussian integrated processes. Stochastic Process. Appl. 98(1), 151–174 (2002)

    Article  MathSciNet  Google Scholar 

  • Dieker, A.B.: Extremes of Gaussian processes over an infinite horizon. Stochastic Process. Appl. 115(2), 207–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieker, A.B., Mikosch, T.: Exact simulation of brown-Resnick random fields at a finite number of locations. Extremes 18, 301–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieker, A.B., Yakir, B.: On asymptotic constants in the theory of Gaussian processes. Bernoulli 20(3), 1600–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Frostig, E.: Upper bounds on the expected time to ruin and on the expected recovery time. Adv. Appl. Probab. 36(2), 377–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Guérin, H., Renaud, J.-F.: On the distribution of cumulative Parisian ruin. Insurance Math. Econom. 73, 116–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Harper, A.J.: Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann. Appl. Probab 23, 584–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Harper, A.J.: Pickands’ constant h α does not equal 1/γ(1/α), for small α. Bernoulli 23(1), 582–602 (2017)

    Article  MathSciNet  Google Scholar 

  • Hashorva, E., Ji, L.: Approximation of passage times of γ-reflected processes with fBm input. J. Appl Probab. 51(3), 713–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Hüsler, J., Piterbarg, V.I.: On the ruin probability for physical fractional Brownian motion. Stochastic Process. Appl. 113(2), 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Hüsler, J., Piterbarg, V.I.: A limit theorem for the time of ruin in a Gaussian ruin problem. Stochastic Process. Appl. 118(11), 2014–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Hüsler, J., Zhang, Y.: On first and last ruin times of Gaussian processes. Statist. Probab. Lett. 78(10), 1230–1235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Iglehart, D.L.: Diffusion approximations in collective risk theory. J. Appl. Probability 6, 285–292 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S.: The time of recovery and the maximum severity of ruin in a Sparre Andersen model. N. Am. Actuar. J. 12(4), 413–427 (2008)

    Article  MathSciNet  Google Scholar 

  • Liu, P., Hashorva, E., Ji, L.: On the γ-reflected processes with fBm input. Lithuanian Math J. 55(3), 402–412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Loeffen, R., Czarna, I., Palmowski, Z.: Parisian ruin probability for spectrally negative lévy processes. Bernoulli 19(2), 599–609 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Michna, Z.: Self-similar processes in collective risk theory. J. Appl. Math. Stochastic Anal. 11(4), 429–448 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Piterbarg, V.I.: Asymptotic methods in the theory of Gaussian processes and fields, volume 148 of translations of mathematical monographs. American Mathematical Society, Providence, RI (1996)

Download references

Acknowledgements

We thank Enkelejd Hashorva for discussions and comments that improved presentation of the results of this contribution. K. Dȩbicki was partially supported by NCN Grant No 2015/17/B/ST1/01102 (2016-2019) whereas P. Liu was supported by the Swiss National Science Foundation Grant 200021-175752/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we give a variant of Theorem 2.1 in Dȩbicki et al. (2017a). Let \(\xi _{u,\tau _{u}}\) be a family of Gaussian random fields given by

$$ \xi_{u,\tau_u}(t)=\frac{Z_{u,\tau_u}(t)}{1+h_{u,\tau_u}(t)}, \quad t\in [0,S], \tau_u\in K_u, $$
(38)

where \(Z_{u,\tau _{u}}\) is a family of centered Gaussian random fields with continuous trajectories and unit variance, \(h_{u,\tau _{u}}\in C([0,S])\), S > 0 and Ku is a set of index. We investigate the asymptotics of

$$\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_{u}})>g_{u,\tau_{u}}, D_{u,\tau_{u}} \right) $$

as u where \(g_{u,\tau _{u}}\) is a series of positive functions of u,

$$\begin{array}{@{}rcl@{}} D_{u,\tau_{u}}=\{Z_{u,\tau_{u}}(0)=g_{u,\tau_{u}}-\frac{w}{g_{u,\tau_{u}}}, w\in D\} \end{array} $$
(39)

with D = (0, ), (−, 0) or \(D=\mathbb {R}\) and \({\Gamma }^{\prime }: C([0,S]){\rightarrow } \mathbb {R}\), 0 ≤ xS is a real-valued continuous functional defined by

$$ {\Gamma}^{\prime}(x,S; f)=\sup\limits_{t\in [x,S]}\min\left( f(t), \sup_{s\in [0,t-x]}f(s)\right), \quad f\in C([0,S]). $$
(40)

In order to avoid trivialities, we assume that

$$\lim\limits_{u{\rightarrow}{\infty}}\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_{u}})>g_{u,\tau_{u}}, D_{u,\tau_{u}} \right)= 0 $$

and observe that \(\mathbb {P} \left ({\Gamma }^{\prime }(x,S;\xi _{u,\tau _{u}})>g_{u,\tau _{u}}, D_{u,\tau _{u}} \right )=\mathbb {P} \left ({\Gamma }^{\prime }(x,S;\xi _{u,\tau _{u}})>g_{u,\tau _{u}} \right )\) if \(D={\mathbb {R}}\).

As in Dȩbicki et al. (2017a) (see Theorem 2.1), we impose the following assumptions:

D0::

\(\lim _{u{\rightarrow }{\infty }}\inf _{\tau _{u}\in K_{u}}g_{u,\tau _{u}}={\infty }\).

D1::

There exist ρ(t), regularly varying function at 0 with index 2α0 ∈ (0, 2] and bi(u) > 0, i = 1, 2 satisfying \(\lim _{u{\rightarrow }{\infty }}b_{i}(u)= 0, i = 1,2\) and \( \lim _{u{\rightarrow }{\infty }}\frac {b_{1}(u)}{b_{2}(u)}=\nu \in [0,{\infty })\) such that

$$\lim\limits_{u{\rightarrow}{\infty}}\sup\limits_{{\tau_u} \in K_u}\sup\limits_{s,t\in [0,S], s\neq t}\left| \left( g_{u,\tau_u}\right)^{2}\frac{1-Corr(Z_{u,\tau_u}(t), Z_{u,\tau_u}(s))}{\frac{\rho(b_1(u)|t-s|)}{\rho(b_2(u))}}-1\right|= 0. $$
D2::

There exists hC([0, S]) such that

$$\lim\limits_{u{\rightarrow}{\infty}}\sup\limits_{\tau_{u}\in K_{u}}\sup\limits_{t\in [0,S]}\left|(g_{u,\tau_{u}})^{2}h_{u,\tau_{u}}(t)-h(t)\right|= 0. $$

Lemma 3.5

Let\(\xi _{u,\tau _{u}}\)be definedas in Eq. 38and Γbe defined in Eq. 40. Assume thatD0-D2are satisfied. Then, forDu, τudefined in Eq. 39withD = (0, ), (−, 0) or\(D=\mathbb {R}\),

$$\lim\limits_{u{\rightarrow}{\infty}}\sup\limits_{\tau_{u}\in K_{u}}\left| \frac{\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_{u}})>g_{u,\tau_{u}}, D_{u,\tau_{u}} \right)}{{\Psi}\left( g_{u,\tau_{u}}\right)} - {\int}_{D} e^{w} \mathbb{P} \left( {\Gamma}^{\prime}(x,S;\!\nu^{\alpha_{0}} B_{\alpha_{0}}(t) - \nu^{2\alpha_{0}}|t|^{2\alpha_{0}} - h(t))\!>\!w \right)dw\right| = 0. $$

Proof

Conditioning on the event that \(Z_{u,\tau _{u}}(0)=g_{u,\tau _{u}}-\frac {w}{g_{u,\tau _{u}}}\) and noting that \(D_{u,\tau _{u}}=\{Z_{u,\tau _{u}}(0)=g_{u,\tau _{u}}-\frac {w}{g_{u,\tau _{u}}}, w\in D\}\), we have

$$\begin{array}{@{}rcl@{}} &&\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_u})>g_{u,\tau_u}, D_{u,\tau_u} \right)\\ &&\quad = \frac{1}{\sqrt{2\pi}g_{u,\tau_u}}{\int}_{\mathbb{R}}e^{-\frac{\left( g_{u,\tau_u}-\frac{w}{g_{u,\tau_u}}\right)^{2}}{2}}\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_u})>g_{u,\tau_u}, D_{u,\tau_u}\left|Z_{u,\tau_u}(0)=g_{u,\tau_u}-\frac{w}{g_{u,\tau_u}} \right.\right)dw\\ && \quad = \frac{e^{-\frac{(g_{u,\tau_u})^{2}}{2}}}{\sqrt{2\pi}g_{u,\tau_u}}{\int}_{D}e^{w-\frac{w^{2}}{2(g_{u,\tau_u})^{2}}}\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_u})>g_{u,\tau_u}\left|Z_{u,\tau_u}(0)=g_{u,\tau_u}-\frac{w}{g_{u,\tau_u}} \right.\right)dw. \end{array} $$

Using the same procedure as in the proof of Theorem 2.1 in Dȩbicki et al. (2017a), we can show that

$${\int}_{D}e^{w-\frac{w^{2}}{2(g_{u,\tau_{u}})^{2}}}\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\xi_{u,\tau_{u}})>g_{u,\tau_{u}}\left|Z_{u,\tau_{u}}(0)=g_{u,\tau_{u}}-\frac{w}{g_{u,\tau_{u}}} \right.\right)dw $$

uniformly converges to

$${\int}_{D}e^{w}\mathbb{P} \left( {\Gamma}^{\prime}(x,S;\nu^{\alpha_{0}} B_{\alpha_{0}}(t)-\nu^{2\alpha_{0}}|t|^{2\alpha_{0}}-h(t))>w \right)dw $$

with respect to τuKu. This completes the proof. □

Remark 3.6

Lemma 3.5 also holds if we substitute Γ by supt∈[x, S]f(t), with fC[x, S], x ≥ 0 and D, a measurable subset of \(\mathbb {R}\) with positive Lebesgue measure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dȩbicki, K., Liu, P. The time of ultimate recovery in Gaussian risk model. Extremes 22, 499–521 (2019). https://doi.org/10.1007/s10687-019-00343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-019-00343-5

Keywords

AMS 2000 Subject Classifications

Navigation