Skip to main content
Log in

Ways of Synthesizing Dichloro-[2,2]-Paracyclophane: A Review

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Ways of synthesizing dichloro-[2,2]-paracyclophane (dichloroPCP), a valuable monomer for the manufacturing of polymeric coating used in radioelectronics, are described. There are currently no plants for its production in Russia. Analysis of the considered methods of synthesis show the Hofmann elimination of quaternary ammonium salts is the best technique for the industrial production of dichloroPCP. A promising way of conducting the four-stage synthesis of this product in practice is to use such catalytic technologies as catalysis with alkalis and Lewis acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Brown, C.J. and Farthing, A.C., Nature, 1949, vol. 164, no. 4178, pp. 915–916.

    Article  CAS  Google Scholar 

  2. Paradies, J., Synthesis, 2001, no. 23, pp. 3749–3766.

  3. CN Patent 103613618, 2015.

  4. David, O.R.P., Tetrahedron, 2012, vol. 68, no. 44, pp. 8977–8993.

    Article  CAS  Google Scholar 

  5. Gibson, S.E. and Knight, J.D., Org. Biomol. Chem., 2003, vol. 1, pp. 1256–1269.

    Article  CAS  PubMed  Google Scholar 

  6. Takenaga, N., Adachi, S., Furusawa, A., Nakamura, K., Suzuki, N., Ohta, Y., Komizy, M., Mukai, C., and Kitagaki, S., Tetrahedron, 2016, vol. 72, no. 43, pp. 6892–6897.

    Article  CAS  Google Scholar 

  7. Bisai, V. and Singh, V.K., Tetrahedron Lett., 2016, vol. 57, no. 43, pp. 4771–4784.

    Article  CAS  Google Scholar 

  8. Modern Cyclophane Chemistry, Hopf, H. and Gleiter, R., Eds., Weinheim: Wiley-VCH, 2004.

    Google Scholar 

  9. De Meijere, A. and König, B., Synlett, 1997, no. 11, pp. 1221–1232.

  10. US Patent 3342754, 1967.

  11. Hopf, H., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, pp. 9808–9812.

    Article  CAS  Google Scholar 

  12. Vögtle, F. and Neumann, P., Synthesis, 1973, no. 2, pp. 85–103.

  13. US Patent 3149175, 1964.

  14. US Patent 3247274, 1966.

  15. US Patent 3258504, 1966.

  16. US Patent 34400295, 1969.

  17. RF Patent 2043323, 1992.

  18. Shevel’kova, L.V., Sokolovskaya, V.G., and Gusel’nikov, L.E., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1993, vol. 36, no. 7, pp. 80–87.

    Google Scholar 

  19. Kawakami, S., Iwaki, S., Nakada, M., and Yamaguchi, T., Bull. Chem. Soc. Jpn., 1991, vol. 64, no. 3, pp. 1000–1004.

    Article  CAS  Google Scholar 

  20. US Patent 2013/0109827, 2013.

  21. Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 1999, vol. 26, 4th ed.

  22. Kardash, I.E., Pebalk, A.V., and A.V. Pravednikov, Itogi Nauki Tekh., Ser.: Khim. Tekhnol. Vysokomol. Soedin., 1984, vol. 19, p. 84.

    Google Scholar 

  23. Otsubo, T., Mizogami, S., Sakata, Y., and Misumi, S., Tetrahedron Lett., 1973, vol. 14, no. 27, pp. 2457–2460.

    Article  Google Scholar 

  24. Pan, D., Wang, Y., and Xiao, G., Beilstein J. Org. Chem., 2016, vol. 12, pp. 2443–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. GB Patent 807196, 1956.

  26. US Patent 2757146, 1956.

  27. US Patent 4675462, 1987.

  28. BR 8605269, 1987.

  29. Winberg, H.E. and Fawcett, F.S., Org. Synth., 1962, vol. 42, p. 83.

    Article  CAS  Google Scholar 

  30. Chow, H.-F., Low, K.-H., and Wong, K.I., Synlett, 2005, no. 14, pp. 2130–2134.

  31. Obshchyaya organicjeskaya khimiya (General Organic Chemistry) Kochetkov, N.K., Ed., Moscow: Khimiya, 1981, vol. 3, pp. 68–70.

    Google Scholar 

  32. US Patent 4532369, 1985.

  33. US Patent 4795838, 1989.

  34. US Patent 4806702, 1989.

  35. US Patent 4734533, 1988.

  36. US Patent 4769505, 1987.

  37. US Patent 4816608, 1989.

  38. US Patent 4853488, 1989.

  39. US Patent 5110903, 1992.

  40. Jpn. Patent 041146, 1992.

  41. Wang, Z., Dong, F., Lu, J., Lui, J., and Ma, H., Chin. J. Org. Chem., 2001, vol. 21, no. 7, pp. 538–540.

    Google Scholar 

  42. Tao, N., Xiao, G., Tong, Y., and Niu, L., Fine Chem., 2009, vol. 26, no. 12, pp. 1159–1162.

    Google Scholar 

  43. CN Patent 105348029, 2015.

  44. Long, Z., Juan, W., Leng, G., Yulun, X., and Weimin, G., Proc. SPIE, 2005, vol. 6029, pp. 1–6.

    Google Scholar 

  45. ChSSR Patent 247592, 1998.

  46. RF Patent 2101272, 1998.

  47. US Patent 4783561, 1988.

  48. US Patent 4849559, 1989.

  49. US Patent 5679874, 1997.

  50. Jpn. Patent 074759, 1995.

  51. Ito, Y., Miyata, S., Nakatsuka, M., and Saegusa, T., J. Org. Chem., 1981, vol. 46, no. 5, pp. 1043–1044.

    Article  CAS  Google Scholar 

  52. Cram, D.J. and Steinberg, H., J. Am. Chem. Soc., 1951, vol. 73, no. 12, pp. 5691–5704.

    Article  CAS  Google Scholar 

  53. Cram, D.J., Usp. Khim., 1960, vol. 29, no. 8, pp. 1029–1047.

    Google Scholar 

  54. Tacahashi, S. and Mori, N., Chem. Lett., 1989, vol. 18, no. 1, pp. 13–14.

    Article  Google Scholar 

  55. Brown, G.W. and Sonheimer, F., J. Am. Chem. Soc., 1967, vol. 89, no. 26, pp. 7116–7117.

    Article  CAS  Google Scholar 

  56. Kaplan, M.L. and Truesdale, E.A., Tetrahedron Lett., 1976, vol. 17, no. 41, pp. 3665–3666.

    Article  Google Scholar 

  57. Boekelheide, V., Reingold, I.D., and Tuttle, M., J. Chem. Soc., Chem. Commun., 1973, pp. 406–407.

  58. Vögtle, F., Fornell, P., and Löhr, W., Chem. Ind., 1979, p. 416.

  59. Coray, A.R., J. Organomet. Chem., 1983, vol. 243, no. 2, pp. 191–193.

    Article  Google Scholar 

  60. PL Patent 162243, 1990.

  61. Higuchi, H., Kugimiya, M., Otsubo, T., Sakata, Y., and Misumi, S., Tetrahedron Lett., 1983, vol. 24, no. 25, pp. 2593–2594.

    Article  CAS  Google Scholar 

  62. Higuchi, H., Tani, K., Otsubo, T., Sakata, Y., and Misumi, S., Bull. Chem. Soc. Jpn., 1987, vol. 60, no. 11, pp. 4027–4036.

    Article  CAS  Google Scholar 

  63. Higuchi, H. and Misumi, S., Tetrahedron Lett., 1982, vol. 23, no. 52, pp. 5571–5574.

    Article  CAS  Google Scholar 

  64. Higuchi, H., Otsubo, T., Ogura, F., Yamaguchi, H., Sakata, Y., and Misumi, S., Bull. Chem. Soc. Jpn., 1982, vol. 55, no. 1, pp. 182–187.

    Article  CAS  Google Scholar 

  65. Takemura, H., Shinmyozu, T., and Inazu, T., Tetrahedron Lett., 1988, vol. 29, no. 9, pp. 1031–1032.

    Article  CAS  Google Scholar 

  66. Isaji, H., Sako, K., Takemura, H., Tatemitsu, H., and Shinmyozi, T., Tetrahedron Lett., 1998, vol. 39, no. 24, pp. 4303–4304.

    Article  CAS  Google Scholar 

  67. Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T., and Shinmyozi, T., Eur. J. Org. Chem., 2001, vol. 2001, no. 13, pp. 2487–2499.

    Article  Google Scholar 

  68. Kurosawa, K., Suenaga, M., Inazu, T., and Yoshino, T., Tetrahedron Lett., 1982, vol. 23, no. 50, pp. 5335–5338.

    Article  CAS  Google Scholar 

  69. Shinmyom, T., Hirai, Y., and Inazu, T., J. Org. Chem., 1986, vol. 51, no. 9, pp. 1551–1555.

    Article  Google Scholar 

  70. Szunerits, S., Utley, J.H.P., and Nielsen, M.F., J. Chem. Soc., Perkin Trans. 2, 2000, vol. 4, pp. 669–675.

    Article  Google Scholar 

  71. US Patent 3616314, 1971.

  72. Hopf, H., Angew. Chem., Int. Ed. Engl., 1972, vol. 11, no. 5, pp. 419–420.

    Article  CAS  Google Scholar 

  73. US Patent 3221068, 1965.

  74. Yeh, V.L. and Gorham, W.F., J. Org. Chem., 1969, vol. 34, no. 8, pp. 2366–2370.

    Article  CAS  Google Scholar 

  75. Reich, H.J. and Cram, D.J., J. Am. Chem. Soc., 1969, vol. 91, no. 13, pp. 3527–3533.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as part of a budget project no. 17-117041710081-1 for the Boreskov Institute of Cata-lysis, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Gogin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogin, L.L., Yushchenko, D.Y., Konev, V.N. et al. Ways of Synthesizing Dichloro-[2,2]-Paracyclophane: A Review. Catal. Ind. 11, 34–44 (2019). https://doi.org/10.1134/S2070050419010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419010057

Keywords:

Navigation