Skip to main content

Advertisement

Log in

Nash network formation among unmanned aerial vehicles

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Multiple unmanned aerial vehicles (UAVs) are applicable to numerous civil and military scenarios, such as rescue, surveillance, inspection, mapping, and so on. In fact, there exists lifetime and distance restrictions in UAVs due to the limited energy and signal attenuation. Therefore, a distributed algorithm is proposed which makes use of cooperative communication to ensure reliable information transmission of UAVs in communication-limited environments. First, a system model is developed by jointly considering the achievable rate, delay and energy consumption, which constitute the utility function of UAVs. Then, in order to study the interactions among UAVs, we present a game framework which allows the UAVs making decision under the global topology. Via a hybrid of the pure-strategy and the mixed-strategy Nash network formation algorithm, a multi-hop tree structure network that connects the UAVs and the ground station is established. Based on our numerical simulation, it demonstrates that the UAVs can adapt to the changing environment. Finally, some comparisons are provided to illustrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nex, F., & Remondino, F. (2014). Uav for 3d mapping applications: A review. Applied Geomatics, 6(1), 1–15.

    Article  Google Scholar 

  2. Erdelj, M., Natalizio, E., Chowdhury, K. R., & Akyildiz, I. F. (2017). Help from the sky: Leveraging uavs for disaster management. IEEE Pervasive Computing, 16(1), 24–32.

    Article  Google Scholar 

  3. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys and Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  4. Palat, R. C., Annamalau, A., & Reed, J. R. (2005). Cooperative relaying for ad-hoc ground networks using swarm UAVs. In IEEE military communications conference, Milcom (pp. 1588–1594).

  5. Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., & Akyildiz, I. F. (2011). Bordersense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 9(3), 468–477.

    Article  Google Scholar 

  6. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18(2), 1123–1152.

    Article  Google Scholar 

  7. Ilker, B., Sahingoz, O., & Samil, T. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.

    Article  Google Scholar 

  8. Thammawichai, M., Baliyarasimhuni, S. P., Kerrigan, E. C., & Sousa, J. (2018). Optimizing communication and computation for multi-UAV information gathering applications. IEEE Transactions on Aerospace and Electronic Systems, 54(2), 601–615.

    Article  Google Scholar 

  9. Scherer, J., & Rinner, B. (2016). Persistent multi-UAV surveillance with energy and communication constraints. In IEEE international conference on automation science and engineering (pp. 1225-1230).

  10. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Transactions on Wireless Communications, 15(6), 3949–3963.

    Article  Google Scholar 

  11. Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., & Hong, C. S. (2017). Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE Journal on Selected Areas in Communications, 35(5), 1046–1061.

    Article  Google Scholar 

  12. Ponda, S. S., Johnson, L. B., Kopeikin, A. N., Choi, H. L., & How, J. P. (2012). Distributed planning strategies to ensure network connectivity for dynamic heterogeneous teams. IEEE Journal on Selected Areas in Communications, 30(5), 861–869.

    Article  Google Scholar 

  13. Rosati, S., Kruzelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700.

    Article  Google Scholar 

  14. Asadpour, M., Hummel, K. A., Giustiniano, D., & Draskovic, S. (2017). Route or carry: Motion-driven packet forwarding in micro aerial vehicle networks. IEEE Transactions on Mobile Computing, 16(3), 843–856.

    Article  Google Scholar 

  15. Shu, J., Ge, Y., Liu, L., & Sun, L. (2012). Mobility prediciton clustering routing in UAVs. In IEEE international conference on computer science and network technology (pp. 1983–1987).

  16. Zang, C., & Zang, S. (2011). Mobility prediction clustering algorithm for UAV networking. In IEEE GLOBECOM workshops (pp. 1158–1161).

  17. Liu, K., Zhang, J., & Zhang, T. (2008). The clustering algorithm of uav networking in near-space. In Proceedings of IEEE international symposium on propagation and EM theory, antennas, ISAPE (pp. 1550–1553).

  18. Luo, F., Jiang, C., Du, J., Yuan, J., Ren, Y., Yu, S., et al. (2015). A distributed gateway selection algorithm for uav networks. IEEE Transactions on Emerging Topics in Computing, 3(1), 22–33.

    Article  Google Scholar 

  19. Yu, Y., Ru, L., Fang, K., et al. (2016). Bio-inspired mobility prediction clustering algorithm for ad hoc uav networks. Engineering Letters, 24(3), 328–337.

    Google Scholar 

  20. Saad, W., Han, Z., Basar, T., Debbah, M., & Hjorungnes, A. (2011). Network formation games among relay stations in next generation wireless networks. IEEE Transactions on Communications, 59(9), 2528–2542.

    Article  Google Scholar 

  21. Clark, C. M., Morton, R., & Bekey, G. A. (2008). Altruistic relationships for optimizing task fulfillment in robot communities. In Distributed autonomous robotic systems (pp. 261–270).

  22. Bacci, G., Lasaulce, S., Saad, W., & Sanguinetti, L. (2016). Game theory for networks: A tutorial on game-theoretic tools for emerging signal processing applications. IEEE Signal Processing Magazine, 33(1), 94–119.

    Article  Google Scholar 

  23. Challita, U., & Saad, W. (2017). Network formation in the sky: Unmanned aerial vehicles for multi-hop wireless backhauling. In IEEE global communications conference (pp. 1–6).

  24. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.

    Article  Google Scholar 

  25. Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.

    Article  Google Scholar 

  26. Sikora, M., Laneman, J. N., Haenggi, M., & Fuja, T. E. (2006). Bandwidth- and power-efficient routing in linear wireless networks. IEEE Transactions on Information Theory, 52(6), 2624–2633.

    Article  MathSciNet  Google Scholar 

  27. Saad, W., Han, Z., Debbah, M., Hjorungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 26(5), 77–97.

    Article  Google Scholar 

  28. Abdulla, A. E. A. A., Md Fadlullah, Z., Nishiyama, H., & Kato, N. (2015). Toward fair maximization of energy efficiency in multiple uas-aided networks: A game-theoretic methodology. IEEE Transactions on Wireless Communications, 14(1), 305–316.

    Article  Google Scholar 

  29. Cai, Y., Yu, F. R., Li, J., Zhou, Y., & Lamont, L. (2013). Medium access control for unmanned aerial vehicle (uav) ad-hoc networks with full-duplex radios and multipacket reception capability. IEEE Transactions on Vehicular Technology, 62(1), 390–394.

    Article  Google Scholar 

  30. Shamma, J. S., & Arslan, G. (2004). Unified convergence proofs of continuous-time fictitious play. IEEE Transactions on Automatic Control, 49(7), 1137–1141.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61673294 and 61773278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailing Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, N., Zong, Q., Tian, B. et al. Nash network formation among unmanned aerial vehicles. Wireless Netw 26, 1781–1793 (2020). https://doi.org/10.1007/s11276-018-1866-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1866-1

Keywords

Navigation