Skip to main content
Log in

Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950–1150 °C and strain rates of 0.01–10 s−1. Based on the classical stress–dislocation density relationship and the kinematics of the dynamic recrystallization, the constitutive equations of the work hardening dynamical recovery period and dynamical recrystallization period were developed by using the work hardening curve and Avrami equation, which shows good agreement with the experimental value. Processing maps at the strain of 0.90 were constructed based on dynamic material model and were analyzed combined with microstructure observation under different conditions. The optimum parameter based on the processing maps was obtained and verified by a supplementary experiment. The power dissipation maps and instability maps at strains of 0.05–0.90 were also constructed, and the evolution law was analyzed in detail. The established constitutive equation and hot processing maps can provide some guidance for hot working process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Gong, X.W. Duan, J.S. Liu, J.J. Liu, Vacuum 155 (2018) 345–357.

    Article  Google Scholar 

  2. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527 (2010) 5467–5473.

    Article  Google Scholar 

  3. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, V.S. Sarma, Mater. Des. 115 (2017) 262–275.

    Article  Google Scholar 

  4. A. Mohamadizadeh, A. Zarei-Hanzaki, H.R. Abedi, S. Mehtonen, D. Porter, Mater. Charact. 107 (2015) 293–301.

    Article  Google Scholar 

  5. Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43 (1998) 243–258.

    Article  Google Scholar 

  6. Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun. 35 (2008) 142–150.

    Article  Google Scholar 

  7. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Des. 90 (2016) 804–814.

    Article  Google Scholar 

  8. Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, L. Qu, Mater. Des. 66 (2015) 258–266.

    Article  Google Scholar 

  9. S.H. Cho, Y.C. Yoo, J. Mater. Sci. 36 (2001) 4267–4272.

    Article  Google Scholar 

  10. X. Ma, Z. An, L. Chen, T. Mao, J. Wang, H. Long, H. Xue, Mater. Des. 86 (2015) 848–854.

    Article  Google Scholar 

  11. R. Raj, Metall. Trans. A 12 (1981) 1089–1097.

    Article  Google Scholar 

  12. Y.V.R.K. Prasad, J. Mater. Eng. Perform. 12 (2013) 2867–2874.

    Google Scholar 

  13. Y.V.R.K. Prasad, Metall. Mater. Trans. A 27 (1996) 235–236.

    Article  Google Scholar 

  14. B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, Q. Zhang, J. Mater. Eng. Perform. 21 (2012) 1455–1461.

    Article  Google Scholar 

  15. C. Zener, J.H. Hollomon, J. Appl. Phys. 15 (1944) 22–32.

    Article  Google Scholar 

  16. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, Acta Mater. 59 (2011) 6441–6448.

    Article  Google Scholar 

  17. Y. Estrin, H. Mecking, Acta Metall. 32 (1984) 57–70.

    Article  Google Scholar 

  18. C.M. Sellars, W.J. McTegart, Acta Metall. 14 (1966) 1136–1138.

    Article  Google Scholar 

  19. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  20. S.V.S.N. Murty, B.N. Rao, J. Mater. Sci. Lett. 14 (1998) 1203–1205.

    Article  Google Scholar 

  21. J. Luo, L. Li, M.Q. Li, Mater. Sci. Eng. A 606 (2014) 165–174.

    Article  Google Scholar 

  22. J. Luo, M.Q. Li, B. Wu, Mater. Sci. Eng. A 530 (2011) 559–564.

    Article  Google Scholar 

  23. E. Pu, W. Zheng, J. Xiang, Z. Song, J. Li, Mater. Sci. Eng. A 598 (2014) 174–182.

    Article  Google Scholar 

  24. G. Quan, L. Zhao, T. Chen, Y. Wang, Y. Mao, W. Lv, J. Zhou, Mater. Sci. Eng. A 538 (2012) 364–373.

    Article  Google Scholar 

  25. Y. Wang, Q. Pan, Y. Song, C. Li, Z. Li, Mater. Des. 51 (2013) 154–160.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shaanxi Key Research and Development Program (No. S2017-ZDYF-ZDXM-GY-0115), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM5010) and Fundamental Research Funds for the Central Universities of China (No. 3102019ZX004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, D., Wang, Jg. et al. Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps. J. Iron Steel Res. Int. 27, 807–819 (2020). https://doi.org/10.1007/s42243-019-00335-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00335-6

Keywords

Navigation