Skip to main content

Advertisement

Log in

Palaeoecological evidence from buried topsoils and colluvial layers at the Bronze Age fortification Corneşti-Iarcuri, SW Romania: results from palynological, sedimentological, chronostratigraphical and plant macrofossil analyses

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Located in the Romanian Banat region, the Late Bronze Age (LBA) fortification Corneşti-Iarcuri is the largest known prehistoric settlement in Europe. Archaeobotanical and geoarchaeological investigations have targeted the reconstruction of vegetation, land use practices and subsistence strategies at the site, together with related human impact and environmental changes in the wider study area. Since colluvia constitute valuable archives in terms of landscape history and anthropogenic disturbance, one major focus was put on floodplain profiles. In the valleys, two generations of colluvium prevailed which were separated by fossil topsoils. Based on several radiocarbon datings, a chronology of events, including distinct phases of geomorphological activity and stability, has been established. Some of the buried palaeosurfaces contained pollen in sufficient concentrations to confirm off-site data from the Vinga area, where the regional vegetation during the Middle Copper Age consisted of Tilia-dominated woodlands with steppe elements. Following a major Late Copper Age deforestation phase that also led to considerable soil erosion, the gradual formation of a cultural landscape is documented by a progressive decline in tree cover in which Quercus gained relative importance, and a continuous presence of land use indicators. Plant macro-remains from archaeological excavations underpin both the openness of the semi-natural woodlands during the pre-fortification era and the increase of animal husbandry and farming in the LBA. Despite evident settlement pressure, it proved to be a geomorphologically stable phase. Towards the Early Iron Age, the values of anthropogenic markers in on-site pollen spectra rose to values comparable to those in surface samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Björkman L, Feurdean A, Cinthio K, Wohlfarth B, Possnert G (2002) Lateglacial and early Holocene vegetation development in the Gutaiului Mountains, northwestern Romania. Quat Sci Rev 21:1039–1059

    Google Scholar 

  • Bodnariuc A, Bouchette A, Dedoubat JJ, Otto T, Fontugne M, Jalut G (2002) Holocene vegetational history of the Apuseni mountains, central Romania. Quat Sci Rev 21:1465–1488

    Google Scholar 

  • Bronk Ramsey C (2017) Methods for summarizing radiocarbon datasets. Radiocarbon 59:1809–1833

    Google Scholar 

  • Bunting MJ, Tipping R, Downes JM (2001) “Anthropogenic” pollen assemblages from a Bronze Age cemetary at Linga Fiold, West Mainland, Orkney. J Archaeol Sci 28:487–500

    Google Scholar 

  • Cappers RTJ, Bekker RM, Jans JEA (2006) Digital seed atlas of the Netherlands, vol 4. Groningen Archaeological Studies. Barkhuis, Eelde

    Google Scholar 

  • Chapman J, Magyari E, Gaydarska B (2009) Contrasting subsistence strategies in the Early Iron Age? New results from the Alföld Plain, Hungary, and the Thracian Plain, Bulgaria. Oxf J Archaeol 28:155–187

    Google Scholar 

  • Cleary DM, Feurdean A, Tanţău I, Forray FL (2019) Pollen, δ15N and δ13C guano-derived record of late Holocene vegetation and climate in the southern Carpathians, Romania. Rev Palaeobot Palynol 265:62–75

    Google Scholar 

  • Constantin S, Bojar A-V, Lauritzen S-E, Lundberg J (2007) Holocene and late pleistocene climate in the sub-mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr Palaeoclimatol Palaeoecol 243:322–338

    Google Scholar 

  • Davidson DA, Carter S, Boag B, Long D, Tipping R, Tyler A (1999) Analysis of pollen in soils: processes of incorporation and redistribution of pollen in five soil profile types. Soil Biol Biochem 31:643–653

    Google Scholar 

  • Demény A, Kern Z, Czuppon G et al (2019) Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe. Quat Int 504:80–95

    Google Scholar 

  • Dicu D, Ţărău D, Borza I (2012) The role of pedological information in agricultural land suitability assessing. Soil Form Factors Proces Temp Zone 11:95–102

    Google Scholar 

  • Dicu D, Ţărău D, Oncia S, Ţărău A, Câmpean A (2013) Research on stopping the trend of desertification in southwestern Romania (Vinga Plain). Res J Agric Sci 45:61–70

    Google Scholar 

  • Dimbleby GW (1957) Pollen analysis of terrestrial soils. New Phytol 56:12–28

    Google Scholar 

  • Dimbleby GW (1961) Soil pollen analysis. Eur J Soil Sci 12:1–10

    Google Scholar 

  • Dimbleby GW (1985) The palynology of archaeological sites. Academic Press, London

    Google Scholar 

  • Drăgulescu A, Hinculov L, Mihailă N (1968) Republica Socialistă România, Harta Geologică: scara 1:200.000. Comitetul de Stat al Geologiei, Institutul Geologic, București

    Google Scholar 

  • Dreibrodt S, Nelle O, Lütjens I, Mitusov A, Clausen I, Bork H-R (2009) Investigations on buried soils and colluvial layers around Bronze Age burial mounds at Bornhöved (northern Germany): an approach to test the hypothesis of ‘landscape openness’ by the incidence of colluviation. Holocene 19:487–497

    Google Scholar 

  • Emadodin I, Reiss S, Bork H-R (2011) Colluviation and soil formation as geoindicators to study long-term environmental changes. Environ Earth Sci 62:1695–1706

    Google Scholar 

  • Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Fărcaş S, Tanţău I (2012) Contributions to the European pollen database: 16. Poiana Ruscă Mountains (Romania): Peşteana peat bog. Grana 51:249–251

    Google Scholar 

  • Fărcaş S, de Beaulieu J-L, Reille M et al (1999) First 14C datings of late glacial and Holocene pollen sequences from Romanian Carpathes. ‎Comptes Rendus Acad Sci Vie 322:799–807

    Google Scholar 

  • Feurdean A (2004) Palaeoenvironment in north-western Romania during the last 15,000 years. Thesis in Quaternary Geology. Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm

    Google Scholar 

  • Feurdean A (2005) Holocene forest dynamics in northwestern Romania. Holocene 15:435–446

    Google Scholar 

  • Feurdean A, Astalos C (2005) The impact of human activities in the Gutâiului Mountains, Romania. Stud UBB Geol 50:63–72

    Google Scholar 

  • Feurdean A, Bennike O (2004) Late quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. J Quat Sci 19:809–827

    Google Scholar 

  • Feurdean A, Tanţău I (2017) The evolution of vegetation from the last glacial maximum until the present. In: Radoane M, Vespremeanu-Stroe A (eds) Landform dynamics and evolution in Romania. Springer, New York, pp 67–83

    Google Scholar 

  • Feurdean A, Willis KJ (2008) The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. For Ecol Manage 256:421–430

    Google Scholar 

  • Feurdean A, Mosbrugger V, Onac BP, Polyak V, Veres D (2007) Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania. Quat Res 68:364–378

    Google Scholar 

  • Feurdean A, Klotz S, Mosbrugger V, Wohlfarth B (2008) Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeogr Palaeoclimatol Palaeoecol 260:494–504

    Google Scholar 

  • Feurdean A, Willis KJ, Astaloş C (2009) Legacy of the past land-use changes and management on the ‘natural’ upland forest composition in the Apuseni Natural Park, Romania. Holocene 19:967–981

    Google Scholar 

  • Feurdean A, Parr CL, Tanţău I, Fărcaş S, Marinova E, Perşoiu I (2013) Biodiversity variability across elevations in the Carpathians: parallel change with landscape openness and land use. Holocene 23:869–881

    Google Scholar 

  • Feurdean A, Perşoiu A, Tanţău I et al (2014) Climate variability and associated vegetation response throughout central and Eastern Europe (CEE) between 60 and 8 ka. Quat Sci Rev 106:206–224

    Google Scholar 

  • Feurdean A, Marinova E, Nielsen AB et al (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963

    Google Scholar 

  • Feurdean A, Ruprecht E, Molnár Z, Hutchinson SM, Hickler T (2018) Biodiversity-rich European grasslands: ancient, forgotten ecosystems. Biol Conserv 228:224–232

    Google Scholar 

  • Florescu G, Hutchinson SM, Kern Z et al (2017) Last 1000 years of environmental history in Southern Bucovina, Romania; a high resolution multi-proxy lacustrine archive. Palaeogeogr Palaeoclimatol Palaeoecol 473:26–40

    Google Scholar 

  • Gardner AR (2002) Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry records. Holocene 12:521–553

    Google Scholar 

  • Geantă A, Gałka M, Tanţău I, Hutchinson SM, Mîndrescu M, Feurdean A (2014) High mountain region of the Northern Romanian Carpathians responded sensitively to Holocene climate and land use changes: a multi-proxy analysis. Holocene 24:944–956

    Google Scholar 

  • Gogăltan F (2015) The early and Middle Bronze Age chronology on the eastern Frontier of the Carpathian Basin. Revisited after 15 Years. In: Németh RE, Rezi B (eds) Bronze Age chronology in the Carpathian Basin, vol 8. Bibliotheca Musei Marisiensis, Seria Archaeologica. Cluj-Napoca, Editura Mega, pp 53–95

    Google Scholar 

  • Grigoraș C, Piciu I (2005) Modifications on the soils map of Vinga Plain due to the application of the Romanian system of soil taxonomy (RSST). Soil Form Factors Process Temp Zone 4:161–167

    Google Scholar 

  • Grigoraş C, Piciu I, Vlăduţ A (2004) Contributions to the knowledge of the cernisols from the Vinga Plain. Forum Geogr 3:33–42

    Google Scholar 

  • Grindean R, Tanţău I, Fărcaş S, Panait A (2014) Middle to late Holocene vegetation shifts in the NW Transylvanian lowlands (Romania). Stud UBB Geol 59:29–37

    Google Scholar 

  • Grindean R, Feurdean A, Hurdu B, Fărcaş S, Tanţău I (2015) Lateglacial/Holocene transition to mid-Holocene: vegetation responses to climate changes in the Apuseni Mountains (NW Romania). Quat Int 388:76–86

    Google Scholar 

  • Grindean R, Tanțău I, Feurdean A (2017) 37. Doda Pilii, Apuseni Mountains (Romania). Grana 56:478–480

    Google Scholar 

  • Gumnior M, Stobbe A (2019) Palaeoenvironmental reconstructions at Corneşti-Iarcuri (Southwestern Romania)—Preliminary results from geomorphogical, pedological and palynological on-site studies. In: Hansen S, Krause R (eds) Bronze Age Fortresses in Europe UPA 335 Prähistorische Konfliktforschung 3. Habelt, Bonn, pp 237–251

    Google Scholar 

  • Harding A (2017) Corneşti-Iarcuri and the rise of mega-forts in Bronze Age Europe. In: Heeb B, Szentmiklosi A, Krause R, Wemhoff M (eds) Fortifications: the rise and fall of defended sites in Late Bronze Age and Early Iron Age of South-East Europe. Berliner Beiträge zur Vor- und Frühgeschichte, vol 21. Staatliche Museen zu Berlin, Berlin, pp 9–15

    Google Scholar 

  • Havinga AJ (1967) Palynology and pollen preservation. Rev Palaeobot Palynol 2:81–98

    Google Scholar 

  • Havinga AJ (1971) An experimental investigation into the decay of pollen and spores in various soil types. In: Brooks J, Grant PR, Muir M, van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, London, pp 446–479

    Google Scholar 

  • Havinga AJ (1984) A 20-year experimental investigation into the decay of pollen and spores in various soil types. Pollen Spores 26:541–558

    Google Scholar 

  • Heeb B, Szentmiklosi A, Krause R (2015) Corneşti-Iarcuri—Ergebnisse der archäologischen Untersuchungen 2007 bis 2014 an der größten prähistorischen Befestigung Europas. Mitteilungen der Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte 46:57–68

    Google Scholar 

  • Heeb B, Szentmiklosi A, Bălărie A, Lehmphul R, Krause R (2017) Corneşti-Iarcuri—10 years of research (2007-2016). Some important preliminary results. In: Heeb B, Szentmiklosi A, Krause R, Wemhoff M (eds) Fortifications: the rise and fall of defended sites in Late Bronze Age and Early Iron Age of South-East Europe, vol 21. Berliner Beiträge zur Vor- und Frühgeschichte. Staatliche Museen zu Berlin, Berlin, pp 217–228

    Google Scholar 

  • Henkner J, Ahlrichs J, Downey S et al (2018) Archaeopedological analysis of colluvial deposits in favourable and unfavourable areas: reconstruction of land use dynamics in SW Germany. Royal Soc Open Sci 5:171624

    Google Scholar 

  • Houben P, Schmidt M, Mauz B, Stobbe A, Lang A (2012) Asynchronous Holocene colluvial and alluvial aggradation: a matter of hydrosedimentary connectivity. Holocene 23:544–555

    Google Scholar 

  • Ianoş G (2002) General considerations on the soil cover of Banat (Romania). Geogr Pannon 6:13–16

    Google Scholar 

  • IUSS Working Group (2015) World reference base for soil resources. World soil resources reports 106. FAO, Rome

    Google Scholar 

  • Jakab G, Sümegi P (2010) Preliminary data on the bog surface wetness from the Sirok Nyírjes-tó peat bog, Mátra Mts, Hungary. Cent Eur Geol 53:43–65

    Google Scholar 

  • Jakab G, Sümegi P, Magyari EK (2004) A new paleobotanical method for the description of Late Quaternary organic sediments (Mire-development pathways and paleoclimatic records from S Hungary). Acta Geol Hung 47:1–37

    Google Scholar 

  • Kiss T, Hernesz P, Sümeghy B, Györgyövics K, Sipos G (2015) The evolution of the great Hungarian Plain fluvial system—fluvial processes in a subsiding area from the beginning of the Weichselian. Quat Int 388:142–155

    Google Scholar 

  • Krause R, Wemhoff M, Szentmiklosi A et al (2019) Vorbericht zu den Feldforschungen der Jahre 2013 und 2014 an der Befestigung Corneşti-Iarcuri im rumänischen Banat. Eurasia Antiqu 22:133–183

    Google Scholar 

  • Lehmphul R, Heeb B, Szentmiklosi A, Stobbe A, Krause R (2019) The genesis of the fortification of Corneşti-larcuri near the Mureş lower course (Romanian Banat)—a phase model on the chronology of the settlement and fortification structures. In: Hansen S, Krause R (eds) Bronze Age fortresses in Europe. UPA 335, Prähistorische Konfliktforschung 3. Habelt, Bonn, pp 253–278

    Google Scholar 

  • Magyari EK, Sümegi P, Braun M, Jakab G, Molnár M (2001) Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. J Ecol 89:1019–1032

    Google Scholar 

  • Magyari EK, Jakab G, Sümegi P, Szöőr G (2008) Holocene vegetation dynamics in the Bereg Plain, NE Hungary—the Báb-tava pollen and plant macrofossil record. Acta GGM Debrecina 3:33–50

    Google Scholar 

  • Magyari EK, Braun M, Buczkó K, Kern Z, László P, Hubay K, Bálint M (2009) Radiocarbon chronology of glacial lake sediments in the Retezat Mts (South Carpathians, Romania): a window to Late Glacial and Holocene climatic and paleoenvironmental changes. Cent Eur Geol 52:225–248

    Google Scholar 

  • Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the northern Great Hungarian Plain. J Biogeogr 37:915–935

    Google Scholar 

  • Magyari EK, Chapman J, Fairbairn AS, Francis M, de Guzman M (2012) Neolithic human impact on the landscapes of North-East Hungary inferred from pollen and settlement records. Veget Hist Archaeobot 21:279–302

    Google Scholar 

  • Magyari EK, Vincze I, Orbán I, Bíró T, Pál I (2018) Timing of major forest compositional changes and tree expansions in the Retezat Mts during the last 16,000 years. Quat Int 477:40–58

    Google Scholar 

  • Micle D, Török-Oance M, Măruia L (2009) The morpho-topographic and cartographic analysis of the archaeological site Cornesti “Iarcuri”, Timiş County, Romania, using computer sciences methods (GIS and Remote Sensing techniques). Ann Univ Tibiscus Comp Sci Series 7:249–262

    Google Scholar 

  • Mihailă N, Popescu N (1987) Geologia şi morfogeneza Câmpiei de Vest (sectorul Arad-Vinga-Pecica) şi evoluţia Mureşului în cursul său inferior. Factori şi Procese Pedogenetice din Zona Temperată 74:1–18

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Moskal-del Hoyo M, Lityńska-Zając M, Raczky P, Anders A, Magyari EK (2018) The character of the Atlantic oak woods of the Great Hungarian Plain. Quat Int 463:337–351. https://doi.org/10.1016/j.quaint.2017.02.029

    Article  Google Scholar 

  • Náfrádi K, Sümegi P, Jakab G, Persaits G, Törőcsik T (2014) Reconstruction of the vegetation and environment during different Climatic and sociotechnical conditions of the last 3000 years in southwestern Hungary. Am J Plant Sci 5:1557–1577

    Google Scholar 

  • Neacşu AG, Arsene G, Arsene A, Stroia C (2015) Research on several rare phytocoenoses in the Banat vegetation. Res J Agric Sci 42:280–286

    Google Scholar 

  • Nykamp M, Heeb B, Knitter D, Krause J, Krause R, Szentmiklosi A, Schütt B (2015) Linking hydrological anomalies to archaeological evidences—Identification of Late Bronze Age Pathways at the Fortification Enclosure Iarcuri in Western Romania. In: Knitter D, Bebermeier W, Nakoinz O (eds) Bridging the Gap—Integrated Approaches in Landscape Archaeology. Berlin. Journal for Ancient Studies Special vol 4:77–92

  • Nykamp M, Hoelzmann P, Heeb B, Szentmiklosi A, Schütt B (2016) Holocene sediment dynamics in the environs of the fortification enclosure of Corneşti-Iarcuri in the Romanian Banat. Quat Int 415:190–203

    Google Scholar 

  • Nykamp M, Knitter D, Timár G, Krause J, Heeb B, Szentmiklosi A, Schütt B (2017) Estimation of wind-driven erosion of a loess-like sediment and its implications for the occurrence of archaeological surface and subsurface finds—an example from the environs of Corneşti-Iarcuri, western Romania. J Archaeol Sci 12:601–612

    Google Scholar 

  • Onac BP, Constantin S, Lundberg J, Lauritzen S-E (2002) Isotopic climate record in a Holocene stalagmite from Ursilor Cave (Romania). J Quat Sci 17:319–327

    Google Scholar 

  • Perşoiu A (2017) Climate evolution during the late glacial and the Holocene. In: Radoane M, Vespremeanu-Stroe A (eds) Landform dynamics and evolution in Romania. Springer, New York, pp 57–66

    Google Scholar 

  • Pietsch D, Kühn P (2014) Buried soils in the context of geoarchaeological research—two examples from Germany and Ethiopia. Archaeol Anthropol Sci 9:1571–1583

    Google Scholar 

  • Punt W et al. (ed) (1976–2009) The northwest European Pollen Flora, vol I–IX. Elsevier, Amsterdam

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord, Suppl 2. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reimer P, Bard E, Bayliss A et al (2013) IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Google Scholar 

  • Rieser H-H (2001) Das rumänische Banat: eine multikulturelle region im Umbruch. Geographische Transformationsforschungen am Beispiel der jüngeren Kulturlandschaftsentwicklung in Südwestrumänien. Thorbecke, Stuttgart

    Google Scholar 

  • Rogobete G, Ţărău D, Bertici R, Dicu D (2011) Soils in relation to archeology at the tell site of Uivar in the South-west of Romania. Factori şi Procese Pedogenetice din Zona Temperată 10:51–60

    Google Scholar 

  • Rohdenburg HH (1970) Morphodynamische Aktivitäts- und Stabilitätszeiten statt Pluvial- und lnterpluvialzeiten. Eiszeitalt Ggw 2:81–96

    Google Scholar 

  • Rösch M, Fischer E (2000) A radiocarbon dated Holocene pollen profile from the Banat mountains (Southwestern Carpathians, Romania). Flora 195:277–286

    Google Scholar 

  • Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches Praktikum—Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte und für Geowissenschaftler, 2nd edn. Blackwell, Berlin

    Google Scholar 

  • Sherwood SC, Windingstad JD, Barker AW, O’Shea JM, Cullen Sherwood W (2013) Evidence for Holocene aeolian activity at the close of the Middle Bronze Age in the Eastern Carpathian Basin: geoarchaeological Results from the Mureş¸ River Valley, Romania. Geoarchaeology 28:131–146

    Google Scholar 

  • Stanciu E (2005) Precipitaţiile atmosferice din Banat. Eurostampa, Timişoara

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, Berlin

    Google Scholar 

  • Stika H-P, Heiss AG (2013) Plant cultivation in the Bronze Age. In: Fokkens H, Harding A (eds) The Oxford handbook of the European Bronze Age. University Press, Oxford, pp 348–369

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–621

    Google Scholar 

  • Sümegi P, Kertész R, Hertelendi E (2002) Environmental change and human adaptation in the Carpathian basin at the late glacial/postglacial transition. In: Jerem E, Biró KT, Rudner E (eds) Archaeometry 98. Proceedings of the 31th symposium Budapest, April 26–May 3,1998. BAR International Series 1043. Archaeopress, Oxford, pp 171–177

  • Sümegi P, Gulyás S, Persaits G, Szelepcsényi Z (2012) Long environment change in forest steppe habitat of the Great Hungarian Plain based on paleoecological data. In: Rakonczai J, Ladányi Z (eds) Review of climate change research program at the University of Szeged (2010–2012). SZTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged, pp 7–24

    Google Scholar 

  • Szentmiklosi A, Heeb BS, Heeb J, Harding A, Krause R, Becker H (2011) Corneşti-Iarcuri–a Bronze Age town in the Romanian Banat? Antiquity 85:819–838

    Google Scholar 

  • Tanţău I, Reille M, de Beaulieu J-L, Fărcaş S, Goslar T, Paterne M (2003) Vegetation history in the Eastern Romanian Carpathians: pollen analysis of two sequences from the Mohoş crater. Veget Hist Archaeobot 12:113–125

    Google Scholar 

  • Tanţău I, Reille M, de Beaulieu J-L, Fărcaş S (2006) Late glacial and Holocene vegetation history in the southern part of Transylvania (Romania): pollen analysis of two sequences from Avrig. J Quat Sci 21:49–61

    Google Scholar 

  • Tanţău I, Reille M, de Beaulieu J-L, Fărcaş S, Brewer S (2009) Holocene vegetation history in Romanian Subcarpathians. Quat Res 72:164–173

    Google Scholar 

  • Tanţău I, Fărcaş S, Beldean C, Geanta A (2011) Late Holocene paleoenvironments and human impact in Făgăras depression (Southern Transylvania, Romania). Carpath J Earth Environ Sci 6:171–178

    Google Scholar 

  • Ţărău D, Dicu D, Oncia S, Ţărău I (2010) Pedological and agrochemical evaluation of degraded lands for their recovery through vineyards, orchards and forest management plans. Res J Agric Sci 42:880–887

    Google Scholar 

  • Ţărău D, Dicu D, Rogobete G, Constantin M, Ţărău A (2014) The role of pedological information in the definition of land productivity and potential pressures on soil quality from Timiş County. Soil Form Factors Proces Temp Zone 13:45–49

    Google Scholar 

  • Tipping R, Bunting MJ, Davies AL, Murray H, Fraser S, McCulloch R (2009) Modelling land use around an early Neolithic timber ‘hall’ in north east Scotland from high spatial resolution pollen analyses. J Archaeol Sci 36:140–149

    Google Scholar 

  • Tomescu AMF (2000) Evaluation of Holocene pollen records from the Romanian Plain. Rev Palaeobot Palynol 109:219–233

    Google Scholar 

  • Urdea P, Sipos G, Kiss T, Onaca A (2012) The Maros/Mureş. In: Sipos G (ed) Past, present, future of the Maros/Mureş river. Departmentul de Geografie, Timişoara, pp 159–166

    Google Scholar 

  • Van Mourik JM (1999) The use of micromorphology in soil pollen analysis: the interpretation of the pollen content of slope deposits in Galicia, Spain. Catena 35:239–257

    Google Scholar 

  • Walter H, Breckle SW (1986) Ökologie der Erde, Band 3: Spezielle Ökologie der gemäßigten und arktischen Zonen Euro-Nordasiens: Zonobiom VI-IX. Fischer, Stuttgart

    Google Scholar 

  • Willis KJ, Sümegi P, Braun M, Tóth A (1995) The late quaternary environmental history of Bátorliget, N.E Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 118:25–47

    Google Scholar 

  • Willis KJ, Braun M, Sümegi P, Tóth A (1997) Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78:740–750

    Google Scholar 

  • Willis KJ, Sümegi P, Braun M, Bennett KD (1998) Prehistoric land degradation in Hungary. Antiquity 72:101–113

    Google Scholar 

  • Zhang W, Lu H, Li C, Dodson J, Meng X (2017) Pollen preservation and its potential influence on paleoenvironmentalreconstruction in Chinese loess deposits. Rev Palaeobot Palynol 240:1–10

    Google Scholar 

Download references

Acknowledgements

We thank the German Research Foundation (DFG) for funding our archaeobotanical project (Grant No. STO-720/4) from 2013 to 2019. We are grateful to our colleagues from Soil Science/Physical Geography (H. Thiemeyer, D. Fritzsch) at the Goethe University in Frankfurt. Finally, we very much appreciate the constructive suggestions from our reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Gumnior.

Additional information

Communicated by J. Lechterbeck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumnior, M., Herbig, C., Krause, R. et al. Palaeoecological evidence from buried topsoils and colluvial layers at the Bronze Age fortification Corneşti-Iarcuri, SW Romania: results from palynological, sedimentological, chronostratigraphical and plant macrofossil analyses. Veget Hist Archaeobot 29, 173–188 (2020). https://doi.org/10.1007/s00334-019-00762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-019-00762-1

Keywords

Navigation