Skip to main content
Log in

Corrosion Behavior of WC–10 wt % Ni3Al Composite in Acidic Media

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The room temperature corrosion behavior of WC–10 wt % Ni3Al composite and WC–8 wt % Co hardmetal in various acidic solutions (1 M H2SO4, 1 M HCl and 1 M HNO3) were compared and investigated utilizing immersion test, electrochemical measurement and surface analytical techniques. The results show that in H2SO4 solution WC–10Ni3Al composite has a nobler free corrosion potential, lower corrosion current density (Icorr) values and intrinsically better corrosion resistance than WC–8Co. Notably, pseudopassivity was observed in the polarization curves of WC–10Ni3Al in both HCl and H2SO4 solutions. In addition, although WC–10Ni3Al is corroded much faster in HNO3 solution than in the other two mediums, it exhibits a superior corrosion resistance compared to WC–8Co. The corrosion mechanism of WC–10Ni3Al composites is dominated by Ni dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., and Sohn, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 288–299.

    Article  CAS  Google Scholar 

  2. Liang, L., Liu, X., Li, X.-q., and Li, Y.-Y., Wear mechanisms of WC–10Ni3Al carbide tool in dry turning of Ti6Al4V, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 272–285.

    Article  CAS  Google Scholar 

  3. Wang, X., Hwang, K.S., Koopman, M., Fang, Z.Z., and Zhang, L., Mechanical properties and wear resistance of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 46–51.

    Article  Google Scholar 

  4. Engqvist, H., Beste, U., and Axén, N., The influence of pH on sliding wear of WC-based materials, Int. J. Refract. Met. Hard Mater., 2000, vol. 18, no. 2, pp. 103–109.

    Article  CAS  Google Scholar 

  5. Hochstrasser, S., Mueller, Y., Latkoczy, C., Virtanen, S., and Schmutz, P., Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy, Corros. Sci., 2007, vol. 49, no. 4, pp. 2002–2020.

    Article  Google Scholar 

  6. Exner, H.E., Physical and chemical nature of cemented carbides, Int. Metals Rev., 1979, vol. 24, no. 1, pp. 149–173.

    CAS  Google Scholar 

  7. Human, A.M. and Exner, H.E., Electrochemical behaviour of tungsten-carbide hardmetals, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 180–191.

    Article  Google Scholar 

  8. Human, A.M., Roebuck, B., and Exner, H.E., Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid, Mater. Sci. and Eng., A, 1998, vol. 241, no. 1, pp. 202–210.

    Article  Google Scholar 

  9. Sutthiruangwong, S., and Mori, G., Corrosion properties of Co-based cemented carbides in acidic solutions, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, no. 3, pp. 135–145.

    Article  CAS  Google Scholar 

  10. Kellner, F.J.J., Hildebrand, H., and Virtanen, S., Effect of WC grain size on the corrosion behavior of WC–Co based hardmetals in alkaline solutions, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 4, pp. 806–812.

    Article  CAS  Google Scholar 

  11. Lin, N., Wu, C.H., He, Y.H., and Zhang, D.F., Effect of Mo and Co additions on the microstructure and properties of WC–TiC–Ni cemented carbides, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, no. 1, pp. 107–113.

    Article  CAS  Google Scholar 

  12. Wan, W., Xiong, J., Yang, M., Guo, Z., Dong, G., and Yi, C., Effects of Cr3C2 addition on the corrosion behavior of Ti(C, N)-based cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 179–186.

    Article  CAS  Google Scholar 

  13. Zhang, Q., Lin, N., and He, Y., Effects of Mo additions on the corrosion behavior of WC–TiC–Ni hardmetals in acidic solutions, Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 15–25.

    Article  Google Scholar 

  14. Su, W., Sun, Y., Liu, J., Feng, J., and Ruan, J., Effects of Ni on the microstructures and properties of WC–6Co cemented carbides fabricated by WC–6(Co, Ni) composite powders, Ceram. Int., 2015, vol. 41, no. 2, Part B, pp. 3169–3177.

    Article  CAS  Google Scholar 

  15. Andrews, N., Giourntas, L., Galloway, A.M., and Pearson, A., Erosion-corrosion behaviour of zirconia, WC–6Co, WC–6Ni and UNS S31600, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 229–237.

    Article  CAS  Google Scholar 

  16. Konadu, D.S., Merwe, J.V.D., Potgieter, J.H., Potgieter-Vermaak, S., and Machio, C.N., The corrosion behaviour of WC–VC–Co hardmetals in acidic media, Corros. Sci., 2010, vol. 52, no. 9, pp. 3118–3125.

    Article  CAS  Google Scholar 

  17. Lin, N., He, Y., Wu, C., Liu, S., Xiao, X., and Jiang, Y., Influence of TiC additions on the corrosion behaviour of WC–Co hardmetals in alkaline solution, Int. J. Refract. Met. Hard Mater., 2014, vol. 46, pp. 52–57.

    Article  CAS  Google Scholar 

  18. Gao, L.X., Zhou, T., Zhang, D.Q., and Lee, K.Y., Microstructure and anodic dissolution mechanism of brazed WC–Ni composite coatings, Corros. Eng. Sci. and Tech., 2014, vol. 49, no. 3, pp. 204–208.

    Article  CAS  Google Scholar 

  19. Bozzini, B., Serra, M., Fanigliulo, A., and Bogan, F., Corrosion behaviour of WC–Co based hardmetalin neutral chloride and acid sulphate media, Mater. Corros., 2002, vol. 53, no. 5, pp. 328–334.

    Article  CAS  Google Scholar 

  20. Bozzini, B., De Gaudenzi, G.P., and Mele, C., Electrochemical behaviour of alloy CoW0·013C0·001 in acidic sulphate solutions, Corros. Eng. Sci. and Tech., 2005, vol. 40, no. 2, pp. 149–157.

    Article  CAS  Google Scholar 

  21. Sikka, V.K., Deevi, S.C., Viswanathan, S., Swindeman, R.W., and Santella, M.L., Advances in processing of Ni3Al-based intermetallics and applications, Intermetallics, 2000, vol. 8, no. 9, pp. 1329–1337.

    Article  CAS  Google Scholar 

  22. Wagle, S., Kaneno, Y., Nishimura, R., and Takasugi, T., Evaluation of the wear properties of dual two-phase Ni3Al/Ni3V intermetallic alloys, Tribo. Int., 2013, vol. 66, pp. 234–240.

    Article  CAS  Google Scholar 

  23. Sikka, V.K., Mavity, J.T., and Anderson, K. Processing of nickel aluminides and their industrial applications. High Temperature Aluminides and Intermetallics. Oxford: Elsevier, 1992, pp. 712–721.

    Chapter  Google Scholar 

  24. Tiegs, T.N., Alexander, K.B., Plucknett, K.P., Menchhofer, P.A., Becher, P.F., and Waters, S.B., Ceramic composites with a ductile Ni3Al binder phase, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 243–247.

    Article  Google Scholar 

  25. Habibi, Rad M., Ahmadian, M., and Golozar, M.A., Investigation of the corrosion behavior of WC–FeAl–B composites in aqueous media, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 62–69.

    Article  Google Scholar 

  26. Long, J., Zhang, Z., Xu, T., and Lu, B., Microstructure, mechanical properties and fracture behavior of WC-40 vol % Ni3Al composites with various carbon contents, Int. J. Refract. Met. Hard Mater., 2013, vol. 40, pp. 2–7.

    Article  CAS  Google Scholar 

  27. Li, X., Chen, J., Zheng, D., Qu, S., and Xiao, Z., Preparation and mechanical properties of WC-10 Ni3Al cemented carbides with plate-like triangular prismatic WC grains, J. Alloys Compd., 2012, vol. 544, pp. 134–140.

    Article  CAS  Google Scholar 

  28. Li, X., Zhang, M., Zheng, D., Cao, T., Chen, J., and Qu, S., The oxidation behavior of the WC-10 wt % Ni3Al composite fabricated by spark plasma sintering, J. Alloys Compd., 2015, vol. 629, pp. 148–154.

    Article  CAS  Google Scholar 

  29. Nazarian Samani, M., Shokuhfar, A., Kamali, A.R., and Hadi, M., Production of a nanocrystalline Ni3Al-based alloy using mechanical alloying, J. Alloys Compd., 2010, vol. 500, no. 1, pp. 30–33.

    Article  CAS  Google Scholar 

  30. Bard, Allen J. and Faulkner, Larry R., Electrochemical Methods: Fundamentals and Applications. Texas: Wiley, 2000.

    Google Scholar 

  31. Sutthiruangwong, S., Mori, G., and Kösters, R., Passivity and pseudopassivity of cemented carbides, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, no. 2, pp. 129–136.

    Article  CAS  Google Scholar 

  32. Mao, Q., Yang, Q., Xiong, W., Li, S., Zhang, M., and Ruan, L., Corrosion behavior of Ni3Al-bonded TiC-based cermets in H2SO4 and NaOH solutions, Ceram. Int., 2018, vol. 44, pp. 13303–13312.

    Article  CAS  Google Scholar 

  33. Xu, Y., Yoshikawa, H., and Jang, J.H., Characterization of surface structure evolution in Ni3Al foil catalysts by hard X-ray photoelectron spectroscopy, J. Phys. Chem. C, 2010, vol. 114, pp. 6047–6053.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minai Zhang.

Additional information

The text was submitted by the authors in English.

Funding

This topic of research was financed by the National Natural Science Foundation of China (Nos. 51474108, 51575193), the Science and Technology Project of Guangdong Province (No. 2017A010103005), the Guangzhou Science and Technology Project (Nos. 201604020139, 201605131028065), the Fundamental Research Funds for Central Universities (No. 2015ZP029), and Dongguan Introduction Plan of Research Team (No. 201536000200027). This work is also supported by China Scholarship Council (No. 201706150054).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, M., Xia, X. et al. Corrosion Behavior of WC–10 wt % Ni3Al Composite in Acidic Media. J. Superhard Mater. 41, 345–354 (2019). https://doi.org/10.3103/S106345761905006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345761905006X

Keywords

Navigation