Skip to main content
Log in

Controlling the Three-Dimensional Printing Mechanical Properties of Nostoc Sphaeroides System

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to explore the opportunities for fresh Nostoc sphaeroides (N. sphaeroides) to be applied to 3D food printing. N. sphaeroides is rich in nutrients and its paste possesses shear thinning properties. It was found the product obtained by 3D food printing with fresh N. sphaeroides had poor printability and was easy to collapse. In this study, we compared the addition of different potato starch (2%, 4%, 6% and 8%) to the characteristics of 3D printing of the N. sphaeroides gel system. The results obtained from the rheological analysis showed that the 6% potato starch added to of N. sphaeroides gel can be utilized for 3D food printing. The addition of potato starch increased the viscosity of the mixture so the printed lines were not easily broken, and the “self-supporting ability” of the material itself was enhanced to maintain a good shape without collapse. Texture profile analysis also showed that the 6% starch added printed product had the best gumminess parameter. In order to get a better printed product, the effects of printing parameters (nozzle diameter (Dn), extrusion rate (Vd) and nozzle moving speed (Vn)) on material printing performance and product formability was tested. When Dn, Vd, Vn were = 1.2 mm, 20 mm3/s, 25 mm/s, respectively, the printed product was having similar to the target product, with less breakage and less the changing of shape. Overall results show that 3D printing technology is a rising method for producing N. sphaeroides-based new products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.C. Godoi, S. Prakash, B.R. Bhandari, J. Food Eng. 179, 44–54 (2016)

    Article  Google Scholar 

  2. C.F. Guo, M. Zhang, B. Bhandari, Compr Rev Food Sci F 18(4), 1052–1069 (2019)

    Article  Google Scholar 

  3. C. Feng, M. Zhang and B. Bhandari, Crit Rev Food Sci Nutr, 1–8 (2018)

    Google Scholar 

  4. Z.B. Liu, M. Zhang, B. Bhandari, Y.C. Wang, Trends Food Sci Tech 69, 83–94 (2017)

    Article  CAS  Google Scholar 

  5. C.X. Feng, Q. Wang, H. Li, Q.C. Zhou, W. Meng, Int. J. Food Eng. 14(3) (2018)

  6. Y.J. An, C.F. Guo, M. Zhang, Z.P. Zhong, J. Sci. Food Agric. (2018)

  7. R.S.M. Azam, M. Zhang, B. Bhandari, C.H. Yang, Food Biophys 13(3), 250–262 (2018)

    Article  Google Scholar 

  8. L. Hao, Mellor, S., Seaman, O., Henderson, J., Sewell, N., & Sloan, M, Virtual and Physical Prototyping (5(2)), 57–64 (2010)

  9. Z.B. Liu, M. Zhang, B. Bhandari, C.H. Yang, J. Food Eng. 220, 76–82 (2018)

    Article  Google Scholar 

  10. F. Yang, M. Zhang, S. Prakash, Y.P. Liu, Innov Food Sci Emerg 49, 202–210 (2018)

    Article  Google Scholar 

  11. F.L. Yang, M. Zhang, B. Bhandari, Y.P. Liu, Lwt-Food Sci Technol 87, 67–76 (2018)

    Article  CAS  Google Scholar 

  12. M.S. Huang, M. Zhang, B. Bhandari, Food Bioprocess Technol. 12(7), 1185–1196 (2019)

    Article  Google Scholar 

  13. L. Wang, M. Zhang, B. Bhandari, C.H. Yang, J. Food Eng. 220, 101–108 (2018)

    Article  CAS  Google Scholar 

  14. A. Derossi, R. Caporizzi, D. Azzollini, C. Severini, J. Food Eng. 220, 65–75 (2018)

    Article  Google Scholar 

  15. S. Mantihal, S. Prakash, F.C. Godoi, B. Bhandari, Innov Food Sci Emerg 44, 21–29 (2017)

    Article  Google Scholar 

  16. C. Le Tohic, J.J. O'Sullivan, K.P. Drapala, et al., J. Food Eng. 220, 56–64 (2018)

    Article  Google Scholar 

  17. Y. Quan, S. Yang, J. Wan, T.T. Su, J. Zhang, Z.Y. Wang, J Taiwan Inst Chem E 52, 14–21 (2015)

    Article  CAS  Google Scholar 

  18. H.F. Li, L.N. Su, S. Chen, et al. Molecules 23(2) (2018)

  19. S.M.R. Azam, M. Zhang, A.S. Mujumdar, C.H. Yang, J. Food Process Eng. 41(5) (2018)

  20. J.I. Lipton, M. Cutler, F. Nigi, D. Cohen, H. Lipson, Trends Food Sci Tech 43(1), 114–123 (2015)

    Article  CAS  Google Scholar 

  21. G.Y. Wu, C.F. Morris, K.M. Murphy, J. Food Sci. 82(10), 2387–2395 (2017)

    Article  CAS  Google Scholar 

  22. J. Epstein, C.F. Morris, K.C. Huber, J. Cereal Sci. 35(1), 51–63 (2002)

    Article  CAS  Google Scholar 

  23. S.J. Schmidt, H.-M. Lai, in Foods: Advances in the 1980s and Trends for the 1990s, ed. by H. Levine, L. Slade. Water Relationships (Springer US, Boston, 1991), pp. 405–452

    Google Scholar 

  24. H. Chen, F.W. Xie, L. Chen, B. Zheng, J. Food Eng. 244, 150–158 (2019)

    Article  CAS  Google Scholar 

  25. Z.B. Liu, B. Bhandari, S. Prakash, S. Mantihal, M. Zhang, Food Hydrocolloid 87, 413–424 (2019)

    Article  CAS  Google Scholar 

  26. K. Alvani, X. Qi, R.F. Tester, C.E. Snape, Food Chem. 125(3), 958–965 (2011)

    Article  CAS  Google Scholar 

  27. J.S. Chen, Z.Y. Deng, P. Wu, J.C. Tian, Q.G. Xie, Agr Sci China 9(12), 1836–1844 (2010)

    Article  CAS  Google Scholar 

  28. A. Goldstein, K.K.M. Nantanga, K. Seetharaman, Cereal Chem. 87(4), 370–375 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from National Natural Science Foundation Program of China (No. 3187101297), China State Key Laboratory of Food Science and Technology Innovation Project (Contract No. SKLF-ZZA-201706), National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180205), Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology (No. FMZ201803), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19_0767), which have enabled us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Zhang, M. & Bhandari, B. Controlling the Three-Dimensional Printing Mechanical Properties of Nostoc Sphaeroides System. Food Biophysics 15, 240–248 (2020). https://doi.org/10.1007/s11483-019-09611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09611-0

Keywords

Navigation