Skip to main content

Advertisement

Log in

The Inhibitory Cascade Model is Not a Good Predictor of Molar Size Covariation

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The inhibitory cascade (IC) model is a widely used evolutionary developmental explanation of among-species differences in relative molar tooth size. The IC model posits that, as molars develop from front to back, the relative strength of activating and inhibiting influences establishes a “ratcheting” mechanism leading to predictable relative molar sizes. Such a constraint on molar covariation would lead to strong variational biases on the evolutionary paths that the molar row can traverse through phenotypic space. These constraints manifest themselves in characteristic patterns of variation among species that loosely match observed macroevolutionary patterns. In this paper, we write out the predictions of the IC model for within-species covariation in molar size in a framework that unifies evolutionary developmental biological and quantitative genetic perspectives on the evolution of complex traits. We then evaluate these predictions about aspects of molar covariation in eight anthropoid primate species. We find that the IC model tends to over-predict aspects of within-species covariation by substantial margins. Only macaques exhibit covariation in and among individual teeth consistent with the IC model, but they do not show signs of the strong evolutionary constraint predicted by the model. Gorillas meet none of the predictions. While we cannot rule out an IC-like process as a contributor, causes of molar size covariation other than those described in the IC model must be major contributors to covariation in molar teeth within populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asahara, M. (2013). Unique inhibitory cascade pattern of molars in canids contributing to their potential to evolutionary plasticity of diet. Ecology and Evolution, 3(2), 278–285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernal, V., Gonzalez, P. N., & Perez, S. I. (2013). Developmental processes, evolvability, and dental diversification of New World monkeys. Evolutionary Biology, 40(4), 532–541.

    Article  Google Scholar 

  • Bohrnstedt, G. W., & Goldberger, A. S. (1969). On the exact covariance of products of random variables. Journal of the American Statistical Association, 64(328), 1439–1442.

    Article  Google Scholar 

  • Bookstein, F. L. (2016). The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evolutionary Biology, 43, 277–313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, K. E., & Worthington, S. (2016). The evolution of anthropoid molar proportions. BMC Evolutionary Biology, 16, 116.

    Article  CAS  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110(2), 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36(1), 44–50.

    Article  Google Scholar 

  • Delezene, L. K. (2015). Modularity of the anthropoid dentition: Implications for the evolution of the hominin canine honing complex. Journal of Human Evolution, 86, 1–12.

    Article  PubMed  Google Scholar 

  • Evans, A. R., Daly, E. S., Catlett, K. K., Paul, K. S., King, S. J., Skinner, M. M., et al. (2016). A simple rule governs the evolution and development of hominin tooth size. Nature, 530(7591), 477–480. https://doi.org/10.1038/nature16972.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Galbany, J., Estebaranz, F., Martínez, L. M., Romero, A., De Juan, J., Turbón, D., et al. (2006). Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting methods for sem research. Microscopy Research and Technique, 69(4), 246–252.

    Article  PubMed  Google Scholar 

  • Gomez-Robles, A. (2016). Palaeoanthropology: What teeth tell us. Nature, 530(7591), 425–426. https://doi.org/10.1038/530425a.

    Article  CAS  PubMed  Google Scholar 

  • Goodall, R. H., Darras, L. P., & Purnell, M. A. (2015). Accuracy and precision of silicon based impression media for quantitative areal texture analysis. Scientific Reports, 5, 10800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabowski, M., & Porto, A. (2016). How many more? Sample size determination in studies of morphological integration and evolvability. Methods in Ecology and Evolution, 8, 592–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, R. M., Fish, J. L., Young, N. M., Smith, F. J., Roberts, B., Dolan, K., et al. (2017). Developmental nonlinearity drives phenotypic robustness. Nature Communications, 8(1), 1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadfield, J. D., et al. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22.

    Article  Google Scholar 

  • Hallgrimsson, B., Green, R. M., Katz, D. C., Fish, J. L., Bernier, F. P., Roseman, C. C., et al. (2018). The developmental-genetics of canalization., Seminars in cell & developmental biology Amsterdam: Elsevier.

    Google Scholar 

  • Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliday, T. J., & Goswami, A. (2013). Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms. BMC Evolutionary Biology, 13(1), 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, T., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21(5), 1201–1219.

    Article  CAS  PubMed  Google Scholar 

  • Hlusko, L. J., Schmitt, C. A., Monson, T. A., Brasil, M. F., & Mahaney, M. C. (2016). The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution. Proceedings of the National Academy of Sciences, 113(33), 9262–9267.

    Article  CAS  Google Scholar 

  • Houle, D. (2010). Numbering the hairs on our heads: The shared challenge and promise of phenomics. Proceedings of the National Academy of Sciences, 107(suppl 1), 1793–1799.

    Article  Google Scholar 

  • Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449(7161), 427–432.

    Article  CAS  PubMed  Google Scholar 

  • Labonne, G., Navarro, N., Laffont, R., Chateau-Smith, C., & Montuire, S. (2014). Developmental integration in a functional unit: Deciphering processes from adult dental morphology. Evolution & Development, 16(4), 224–232.

    Article  Google Scholar 

  • Lewontin, R. C., et al. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  • Lynch, M., Walsh, B., et al. (1998). Genetics and Analysis of Quantitative Traits (Vol. 1). Sunderland, MA: Sinauer.

    Google Scholar 

  • Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36(4), 377–385.

    Article  Google Scholar 

  • Morrissey, M. B. (2015). Evolutionary quantitative genetics of nonlinear developmental systems. Evolution, 69(8), 2050–2066.

    Article  PubMed  Google Scholar 

  • Navarro, N., & Maga, A. M. (2018). Genetic mapping of molar size relations identifies inhibitory locus for third molars in mice. Heredity, 121, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plavcan, J. M. (1990). Sexual dimorphism in the dentition of extant anthropoid primates. Ann Arbor: University Microfilms.

    Google Scholar 

  • Polly, P. D. (2007). Evolutionary biology: Development with a bite. Nature, 449(7161), 413–415.

    Article  CAS  PubMed  Google Scholar 

  • Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35(2), 83–96.

    Article  Google Scholar 

  • Polly, P. D. (2015). Gene networks, occlusal clocks, and functional patches: New understanding of pattern and process in the evolution of the dentition. Odontology, 103(2), 117–125. https://doi.org/10.1007/s10266-015-0208-3.

    Article  CAS  PubMed  Google Scholar 

  • Rice, S. H. (2002). A general population genetic theory for the evolution of developmental interactions. Proceedings of the National Academy of Sciences, 99(24), 15518–15523.

    Article  CAS  Google Scholar 

  • Schroer, K., & Wood, B. (2015). Modeling the dental development of fossil hominins through the inhibitory cascade. Journal of Anatomy, 226(2), 150–162.

    Article  PubMed  Google Scholar 

  • Sokal, R., & Rohlf, F. (1995). Analysis of frequencies. New York: WH Freeman.

    Google Scholar 

  • Walsh, B., & Blows, M. W. (2009). Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annual Review of Ecology, Evolution, and Systematics, 40, 41–59.

    Article  Google Scholar 

  • Wolf, J. B. (2002). The geometry of phenotypic evolution in developmental hyperspace. Proceedings of the National Academy of Sciences, 99(25), 15849–15851.

    Article  CAS  Google Scholar 

  • Wolf, J. B. (2003). Genetic architecture and evolutionary constraint when the environment contains genes. Proceedings of the National Academy of Sciences, 100(8), 4655–4660.

    Article  CAS  Google Scholar 

  • Young, N. M. (2013). Macroevolutionary diversity of amniote limb proportions predicted by developmental interactions. Journal of Experimental Zoology Part B, 320(7), 420–427.

    Google Scholar 

  • Young, N. M., Winslow, B., Takkellapati, S., & Kavanagh, K. (2015). Shared rules of development predict patterns of evolution in vertebrate segmentation. Nature Communications, 6, 6690.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a National Science Foundation Dissertation Improvement Grant to LKD under Dr. William H. Kimbel (BCS-0852105) and Wenner-Gren Foundation Dissertation Fieldwork Grant (#7884) to LKD. LKD also acknowledges the financial support provided by a Connor Family Faculty Fellowship and from the Office of Research and Development at the University of Arkansas. We thank Drs. Campbell Rolian, Julia Boughner, Peter Ungar, David Strait, Rebecca Green, Benedikt Hallgrímsson, Ben Auerbach, and the Marcucio, Weaver, Steel, and Hallgrímsson lab groups for comments and critical feedback on early versions of this work that greatly improved it. Errors and omissions are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Roseman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roseman, C.C., Delezene, L.K. The Inhibitory Cascade Model is Not a Good Predictor of Molar Size Covariation. Evol Biol 46, 229–238 (2019). https://doi.org/10.1007/s11692-019-09480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-019-09480-y

Keywords

Navigation