Skip to main content
Log in

Numerical investigation of flame propagation in pulse detonation engine with variation of obstacle clearance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of present research work is to investigate the combustion flame acceleration and performance of pulse detonation engine (PDE). The PDE tube consisting of obstacles of varying gap with fixed blockage ratio is analyzed in the current study. The three-dimensional reactive Navier–Stokes equation along with realizable kε turbulence model is used to simulate the combustion phenomena of hydrogen–air mixture. The one-step irreversible chemical kinetics model analyzes detailed mechanism of exothermic reaction. The propagation of flame and deflagration-to-detonation transition (DDT) run-up length is based on normal propagating regime. As the gap between combustor inner surface and obstacle outer diameter increases, the propagating area near the combustor axis reduces. Therefore, loss of momentum of turbulence combustion particle and unburnt fuel particles (voids) are increased at the wake of obstacle due to the increase in gap (or reduction in obstacle outer diameter), which results reduction in detonation wave velocity and detonation total pressure. However, DDT flame run-up length increases with lower temperature along the axis of PDE combustor. The thrust force generated by PDE combustor also gets reduced as the obstacle diameter is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CJ:

Chapman Jouguet

\(D_{\text{CJ}}\) :

Chapman Jouguet detonation speed

\(D_{\text{i}}\) :

Diffusion coefficient

\(F\) :

Number of moles of fuel

h :

Specific enthalpy

\(k_{\text{th}}\) :

Thermal conductivity

\(M_{\text{i}}\) :

Symbol denoting species i

\(n\) :

Number of chemical species in system

P :

Pressure

\(q_{\text{j}}\) :

Heat flux

\(R_{\text{G}}\) :

Universal gas constant

\(S\) :

Source term

T :

Temperature

\(u_{\text{ij}}\) :

Velocity in i and j direction

\(W_{\text{f}}\) :

Molar weight of fuel

Y i :

Mass fraction of ith species

\(\alpha_{\text{i}}\) :

Molar fraction

\(\nu_{\text{i,r}}^{{\prime }}\) :

Stoichiometric coefficient for reactant i in reaction r

\(\nu_{\text{i,r}}^{{\prime \prime }}\) :

Stoichiometric coefficient for product i in reaction r

\(\mu_{\text{t}}\) :

Turbulent viscosity

\(\tau_{\text{ij}}\) :

Viscous stress tensor

ρ :

Density

ϕ :

Equivalent ratio of fuel and air

CFD:

Computational fluid dynamics

PDE:

Pulse detonation engine

References

  1. Dong H, Zan W, Hong T, Zhang X. Numerical simulation of deflagration to detonation transition in granular HMX explosives under thermal ignition. J Therm Anal Calorim. 2017;127:975–81.

    Article  CAS  Google Scholar 

  2. Liu HY, Qian XM, Du ZM. Thermal explosion model and calculation of sphere fireworks and crackers. J Therm Anal Calorim. 2012;110:1029–36.

    Article  CAS  Google Scholar 

  3. Tangirala VE, Dean AJ, Pinard PF, Varathrajan B. Investigations of cycle processes in a pulsed detonation engine operating on fuel–air mixtures. Proc Combust Inst. 2005;30:2817–24.

    Article  Google Scholar 

  4. Alam N, Sharma KK, Pandey KM. Numerical investigation of combustion phenomena in pulse detonation engine with different fuels. In: AIP Conference Proceedings. 2018.

  5. Lee JH. Dynamic parameters of gaseous detonations. Ann Rev Fluid Mech. 1984;16:311–36.

    Article  Google Scholar 

  6. Kumar PP, Kim KS, Oh S, Choi JY. Numerical comparison of hydrogen–air reaction mechanisms for unsteady shock induced combustion applications. J Mech Sci Technol. 2015;29(3):893–8.

    Article  Google Scholar 

  7. Zhang G, Kim HD. Numerical simulation of shock wave and contact surface propagation in micro shock tubes. J Mech Sci Technol. 2015;29(4):1689–96.

    Article  Google Scholar 

  8. Liang D, Liu J, Xiao J, Xi J, Wang Y, Zhou J. Effect of metal additives on the composition and combustion characteristics of primary combustion products of B-based propellants. J Therm Anal Calorim. 2015;122:497–508.

    Article  CAS  Google Scholar 

  9. Heiser WH, Pratt DT. Thermodynamic cycle analysis of pulse detonation engines. J Propul Power. 2002;18(1):68–76.

    Article  Google Scholar 

  10. Goldmeer J, Tangirala VE, Dean AJ. System-level performance estimation of a pulse detonation based hybrid engine. J Eng Gas Turb Power. 2008;130(1):011201-1–8.

    Article  Google Scholar 

  11. Zheng K, Yu M, Zheng L, Wen X, Chu T, Wang L. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts. Int J Hydrog Energy. 2017;42(8):5426–38.

    Article  CAS  Google Scholar 

  12. Kellenberger M, Ciccarelli G. Propagation mechanisms of supersonic combustion waves. Proc Combust Inst. 2015;35:2109–16.

    Article  CAS  Google Scholar 

  13. Lee JH, Moen IO. The mechanism of transition from deflagration to detonation in vapor cloud explosion. Prog Energy Combust Sci. 1980;6:359–89.

    Article  CAS  Google Scholar 

  14. Heidari A, Wen JX. Flame acceleration and transition from deflagration to detonation in hydrogen explosions. Int J Hydrog Energy. 2014;39:6184–200.

    Article  CAS  Google Scholar 

  15. Li J, Zhang P, Yuan L, Pan Z, Zhu Y. Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap. Appl Therm Eng. 2017;110:1274–82.

    Article  CAS  Google Scholar 

  16. Dzieminskaand E, Hayashi AK. Auto-ignition and DDT driven by shock wave–boundary layer interaction in oxyhydrogen mixture. Int J Hydrog Energy. 2013;38:4185–93.

    Article  Google Scholar 

  17. Gamezo VN, Ogawa T, Oran ES. Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust Flame. 2008;155:302–15.

    Article  CAS  Google Scholar 

  18. Jie L, Longxi Z, Zhiwu W, Changxin P, Xinggu C. Thrust measurement method verification and analytical studies on a liquid-fueled pulse detonation engine. Chin J Aeronaut. 2014;27(3):497–504.

    Article  Google Scholar 

  19. Gaathaug AV, Vaagsaether K, Bjerketvedt D. Experimental and numerical investigation of DDT in hydrogen–air behind a single obstacle. Int J Hydrog Energy. 2012;37:17606–15.

    Article  CAS  Google Scholar 

  20. Gamezo VN, Ogawa T, Oran ES. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc Combust Inst. 2007;31:2463–71.

    Article  Google Scholar 

  21. ANSYS. ANSYS fluent 14.0 theory guide. ANSYS Inc: Canonsburg; 2011. PA 15317.

  22. Chapman S, Cowling TG. The mathematical theory of non-uniform gases. 3rd ed. Cambridge University Press: COMB; 1970.

    Google Scholar 

  23. Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV. Detonation onset following shock wave focusing. Acta Astronaut. 2017;135:114–30.

    Article  CAS  Google Scholar 

  24. Gnani F, Zare-Behtash H, White C, Kontis K. Effect of back-pressure forcing on shock train structures in rectangular channels. Acta Astronaut. 2018;145:471–81.

    Article  Google Scholar 

  25. Alam N, Pandey KM, Sharma KK. Numerical investigation of combustion wave propagation in obstructed channel of pulse detonation engine using kerosene and butane fuels. J Appl Fluid Mech. 2019;12(3):883–90.

    Article  Google Scholar 

  26. Alam N, Sharma KK, Pandey KM. Combustion characteristics of hydrogen–air mixture in pulse detonation engines. J Mech Sci Technol. 2019;33(5):2451–7.

    Article  Google Scholar 

  27. Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill; 1988.

    Google Scholar 

  28. Warnatz J, Maas U, Dibble RW. Combustion-physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation. New York: Springer; 2001.

    Google Scholar 

  29. Hirschfelder JO, Gurtiss CF, Bird RB. Molecular theory of gases and liquids. J Am Chem Soc. 1955;77(7):2031–2.

    Article  Google Scholar 

  30. Kuhl AL, Leyer JC, Borisov AA, Sirignano WA. Dynamics of gaseous combustion. Reston: AIAA; 1991.

    Google Scholar 

  31. Wei H, Shang Y, Chen C, Gao D, Feng D. One dimensional numerical study on pressure wave–flame interaction and flame acceleration under engine-relevant conditions. Int J Hydrog Energy. 2015;40:4874–83.

    Article  CAS  Google Scholar 

  32. Anetor L, Osakue E, Odetunde C. Reduced mechanism approach of modeling premixed propane–air mixture using ANSYS fluent. Eng J. 2012;16(1):67–86.

    Article  Google Scholar 

  33. Choubey G, Pandey KM. Effect of different strut + wall injection techniques on the performance of two-strut scramjet combustor. Int J Hydrog Energy. 2017;42:13259–75.

    Article  CAS  Google Scholar 

  34. Choubey G, Pandey KM. Effect of parametric variation of strut layout and position on the performance of a typical two-strut based scramjet combustor. Int J Hydrog Energy. 2017;42:10485–500.

    Article  CAS  Google Scholar 

  35. Choubey G, Pandey KM. Investigation on the effects of operating variables on the performance of two-strut scramjet combustor. Int J Hydrog Energy. 2016;42:20753–70.

    Article  Google Scholar 

  36. Ezoji H, Shafaghat R, Jahanian O. Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions. J Therm Anal Calorim. 2019;135(3):1775–85.

    Article  CAS  Google Scholar 

  37. Choubey G, Pandey KM. Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor. Acta Astronaut. 2018;145:93–104.

    Article  CAS  Google Scholar 

  38. Phylippov YG, Dushin VR, Nikitin VF, Nerchenko VA, Korolkova NV, Guendugov VM. Fluid mechanics of pulse detonation thrusters. Acta Astronaut. 2012;76:115–26.

    Article  CAS  Google Scholar 

  39. Betelin VB, Nikitin VF, Altukhov DI, Dushin VR, Koo J. Supercomputer modeling of hydrogen combustion in rocket engines. Acta Astronaut. 2013;89:46–59.

    Article  CAS  Google Scholar 

  40. Smirnov NN, Betelin VB, Nikitin VF, Phylippov YG, Koo J. Detonation engine fed by acetylene–oxygen mixture. Acta Astronaut. 2014;104:134–46.

    Article  CAS  Google Scholar 

  41. Wintenberger E, Austin JM, Cooper M, Jackson S, Shepherd JE. An analytical model for the impulse of a single-cycle pulse detonation engine. 37th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Salt Lake City, UT, 2001.

  42. Kailasanath K, Patnaik G, Li C. The flow field and performance of pulse detonation engines. Proc Combust Inst. 2002;29:2855–62.

    Article  Google Scholar 

  43. Card J, Rival D, Ciccarelli G. DDT in fuel–air mixtures at elevated temperatures and pressures. Shock Waves. 2005;14(3):167–73.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the Department of Mechanical Engineering, NIT Silchar, Assam, India for providing CFD lab facilities, and also, thankful to TEQIP III for providing financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, N., Sharma, K.K. & Pandey, K.M. Numerical investigation of flame propagation in pulse detonation engine with variation of obstacle clearance. J Therm Anal Calorim 140, 2485–2495 (2020). https://doi.org/10.1007/s10973-019-08948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08948-5

Keywords

Navigation