Skip to main content
Log in

Rosuvastatin protects isolated hearts against ischemia-reperfusion injury: role of Akt-GSK-3β, metabolic environment, and mitochondrial permeability transition pore

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The cardioprotective activity of rosuvastatin (R) is yet to be known. The objective of this study was to research whether R perfusion before global ischemia can mitigate myocardial ischemia-reperfusion damage, considering the metabolic condition in which these effects occur, and to contemplate potential mitochondrial benefits. Protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) and mitochondrial permeability transition pore (MPTP) are key elements in myocardial injury produced by ischemia-reperfusion. Isolated rat hearts were subjected to 25-min ischemia and 1-h reperfusion in the presence or absence of R, with or without Wortmannin (W), a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor. Akt and GSK-3β were measured by Western blot analysis; lactate, glycogen, and G6PDH were determined; and Ca2+-induced MPTP opening was evaluated using a spectrophotometric method. Contractility was assessed by left ventricular developed pressure (LVDP), and rate-pressure product (RPP), peak rate of contraction and peak rate of relaxation (± dP/dt), and left ventricular end-diastolic pressure (LVEDP) were determined. Tissue samples were extracted to evaluate mitochondrial damage by electron microscopy and to assess infarct size. Statistical analysis employed ANOVA (n = 6/per group). Myocardial infarct size was significantly reduced by R, which also improved cardiac function. MPTP opening was delayed to 300 μM CaCl2, while use of W resulted in MPTP opening at 200 μM CaCl2. Electron microscopy showed better mitochondrial preservation with R, which reduced lactic acid production, increased glycogen consumption and G6PDH activity, as well as phosphorylation of Akt and GSK-3β. R before ischemia is cardioprotective against ischemic and reperfusion damage, activating Akt and regulating GSK-3β negatively and attenuating the MPTP opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beckner ME, Gobbel GT, Abounader R, Burovic F, Agostino NR, Laterra J, Pollack IF (2005) Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Investig 85:1457–1470. https://doi.org/10.1038/labinvest.3700355

    Article  PubMed  CAS  Google Scholar 

  2. Bener A, Dogan M, Barakat L, Al-Hamaq AOAA (2014) Comparison of cost-effectiveness, safety, and efficacy of Rosuvastatin versus atorvastatin, pravastatin, and simvastatin in Dyslipidemic diabetic patients with or without metabolic syndrome. J Prim Care Community Health 5:180–187. https://doi.org/10.1177/2150131914520991

    Article  PubMed  Google Scholar 

  3. Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155. https://doi.org/10.1152/physrev.00001.2015

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhuiyan J, Seccombe DW (1996) The effects of 3-hydroxy-3-methylglutaryl-CoA reductase inhibition on tissue levels of carnitine and carnitine acyltransferase activity in the rabbit. Lipids 31:867–870

    Article  CAS  Google Scholar 

  5. Burkhoff D, Weiss RG, Schulman SP, Kalil-Filho R, Wannenburg T, Gerstenblith G (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Phys 261:H741–H750. https://doi.org/10.1152/ajpheart.1991.261.3.H741

    Article  CAS  Google Scholar 

  6. Burma O, Onat E, Uysal A, Ilhan N, Erol D, Ozcan M, Sahna E (2014) Effects of rosuvastatin on ADMA, rhokinase, NADPH oxidase, caveolin-1, hsp 90 and NFkB levels in a rat model of myocardial ischaemia-reperfusion. Cardiovasc J Afr 25(5):212–216. https://doi.org/10.5830/CVJA-2014-038

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chiu H-C, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes Lipotoxic cardiomyopathy. Circ Res 96(2):225–233. https://doi.org/10.1161/01.RES.0000154079.20681.B9

    Article  PubMed  CAS  Google Scholar 

  8. Christe M, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26:1371–1375. https://doi.org/10.1006/jmcc.1994.1155

    Article  PubMed  CAS  Google Scholar 

  9. Daghistani HM, Rajab BS, Kitmitto A (2018) Three-dimensional electron microscopy techniques for unravelling mitochondrial dysfunction in heart failure and identification of new pharmacological targets. Br J Pharmacol. https://doi.org/10.1111/bph.14499

    Article  CAS  Google Scholar 

  10. Danchenko EO, Chirkin AA (2010) A new approach to the determination of glycogen concentration in various tissues and comments on the interpretation of its results. Sud Med Ekspert 53:25–28

    PubMed  CAS  Google Scholar 

  11. D'Annunzio V, Donato M, Erni L, Miksztowicz V, Buchholz B, Carrión CL, Schreier L, Wikinski R, Gelpi RJ, Berg G, Basso NJ (2009) Rosuvastatin given during reperfusion decreases infarct size and inhibits matrix metalloproteinase-2 activity in normocholesterolemic and hypercholesterolemic rabbits. Cardiovasc Pharmacol 53(2):137–144. https://doi.org/10.1097/FJC.0b013e318197c5e9

    Article  CAS  Google Scholar 

  12. Echler G (1983) Determination of glucose-6-phosphate dehydrogenase levels in red cell preparations. Am J Med Technol 49:259–262

    PubMed  CAS  Google Scholar 

  13. González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Mosca SM (2016) Cyclosporine-a mimicked the ischemic pre- and postconditioning-mediated cardioprotection in hypertensive rats: role of PKCε. Exp Mol Pathol 100:266–275. https://doi.org/10.1016/j.yexmp.2016.01.009

    Article  PubMed  CAS  Google Scholar 

  14. Henning RJ, Dennis S, Sawmiller D, Hunter L, Sanberg P, Miller L (2012) Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Transl Res 159:497–506. https://doi.org/10.1016/j.trsl.2012.02.004

    Article  PubMed  CAS  Google Scholar 

  15. Huisamen B, Genade S, Lochner A (2008) Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr 19(2):77–83

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164. https://doi.org/10.1126/science.1059344

    Article  PubMed  CAS  Google Scholar 

  17. Jiang F, Yang J, Zhang L, Li R, Zhuo L, Sun L, Zhao Q (2014) Rosuvastatin reduces ischemia-reperfusion injury in patients with acute coronary syndrome treated with percutaneous coronary intervention. Clin Cardiol 37(9):530–535. https://doi.org/10.1002/clc.22292

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jovanović A (2018) Cardioprotective signalling: past, present and future. Eur J Pharmacol 833:314–319. https://doi.org/10.1016/j.ejphar.2018.06.029

    Article  PubMed  CAS  Google Scholar 

  19. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H (2015) Pleiotropic effects of statins. Indian J Endocrinol Metab 19:554–562. https://doi.org/10.4103/2230-8210.163106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kelle I, Akkoç H, Uyar E, Erdinç M, Evliyaoğlu O, Sarıbaş S, Tunik S, Özoğul C (2015) The combined effect of rosuvastatin and ischemic pre- or post-conditioning on myocardial ischemia-reperfusion injury in rat heart. Eur Rev Med Pharmacol Sci 19(13):2468–2476

    PubMed  CAS  Google Scholar 

  21. Kinlay S, Schwartz GG, Olsson AG, Rifai N, Sasiela WJ, Szarek M, Ganz P, Libby P (2004) Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the myocardial ischemia reduction with aggressive cholesterol lowering (MIRACL) study. Circulation 110(4):386–391. https://doi.org/10.1161/01.CIR.0000136588.62638.5E

    Article  PubMed  CAS  Google Scholar 

  22. Li W, Zhang C, Sun X (2018) Mitochondrial Ca2+ retention capacity assay and Ca2+-triggered mitochondrial swelling assay. J Vis Exp 135:e56236. https://doi.org/10.3791/56236

    Article  CAS  Google Scholar 

  23. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339:1349–1357. https://doi.org/10.1056/NEJM199811053391902

    Article  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Miyamoto S, Murphy AN, Brown JH (2009) Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. J Bioenerg Biomembr 41(2):169–180. https://doi.org/10.1007/s10863-009-9205-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nesci S, Trombetti F, Ventrella V, Pagliarani A (2018) From the Ca 2+ −activated F 1 F O -ATPase to the mitochondrial permeability transition pore: an overview. Biochimie 152:85–93. https://doi.org/10.1016/j.biochi.2018.06.022

    Article  PubMed  CAS  Google Scholar 

  27. Ong S-B, Hall AR, Dongworth RK, Kalkhoran S, Pyakurel A, Scorrano L, Hausenloy DJ (2015) Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. ThrombHaemost 113:513–521. https://doi.org/10.1160/TH14-07-0592

    Article  Google Scholar 

  28. Shimojo N, Fujino K, Kitahashi S, Nakao M, Naka K, Okuda K (1991) Lactate analyzer with continuous blood sampling for monitoring blood lactate during physical exercise. Clin Chem 37:1978–1980

    Article  CAS  Google Scholar 

  29. Sicard P, Lauzier B, Oudot A, Busseuil D, Collin B, Duvillard L, Moreau D, Vergely C, Rochette L (2005) A treatment with rosuvastatin induced a reduction of arterial pressure and a decrease of oxidative stress in spontaneously hypertensive rats. Arch Mal Coeur Vaiss 98(7–8):804–808

    PubMed  CAS  Google Scholar 

  30. Solaini G, Harris DA (2005) Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 390:377–394. https://doi.org/10.1042/BJ20042006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57

    Article  CAS  Google Scholar 

  32. Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, Murase H, Tobisawa T, Ogasawara M, Horio Y, Miura T (2014) Translocation of glycogen synthase Kinase-3® (GSK-3®), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent Anion Channel 2 (VDAC2). J Biol Chem 289(42):29285–29296. https://doi.org/10.1074/jbc.M114.563924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tian M, Xie Y, Meng Y, Ma W, Tong Z, Yang X, Lai S, Zhou Y, He M, Liao Z (2019) Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3 β pathway. Eur J Pharmacol 843:80–87. https://doi.org/10.1016/j.ejphar.2018.11.016

    Article  PubMed  CAS  Google Scholar 

  34. Wang L, Lin R, Guo L, Hong M (2018) Rosuvastatin relieves myocardial ischemia/reperfusion injury by upregulating PPAR-γ and UCP2. Mol Med Rep 18(1):789–798. https://doi.org/10.3892/mmr.2018.9062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Welty FK, Lewis SJ, Friday KE, Cain VA, Anzalone DA (2016) A comparison of statin therapies in hypercholesterolemia in women: a subgroup analysis of the STELLAR study. J Women's Health (Larchmt) 25(1):50–56. https://doi.org/10.1089/jwh.2015.5271

    Article  Google Scholar 

  36. WHO | World Health Organization. https://www.who.int/. Accessed 9 Jan 2019

  37. Zheng Z, Jayaram R, Jiang L, Emberson J, Zhao Y, Li Q, Du J, Guarguagli S, Hill M, Chen Z, Collins R, Casadei B (2016) Preoperative rosuvastatin in cardiac surgery. N Engl J Med 375:901–903. https://doi.org/10.1056/NEJMoa1507750

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Roemmers for the donation of Rosuvastatin. We also express our gratitude to Federico Reznik for his invaluable support in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora E. Vélez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

Hearts subjected to ischemia-reperfusion treated with rosuvastatin:

• Improved post-ischemic functional recovery and decreased infarct size.

• Decreased lactic acid production and increased the activity of G6PDH.

• Preserved mitochondrial structure, increasing the capacity of ATP synthesis.

• Activated Akt and negatively regulated GSK-3β, attenuating opening of the MPTP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez, D.E., Mestre-Cordero, V.E., Hermann, R. et al. Rosuvastatin protects isolated hearts against ischemia-reperfusion injury: role of Akt-GSK-3β, metabolic environment, and mitochondrial permeability transition pore. J Physiol Biochem 76, 85–98 (2020). https://doi.org/10.1007/s13105-019-00718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00718-z

Keywords

Navigation