Skip to main content
Log in

Delving into the Two-Dimensional Structure of a Cold Eddy East of Taiwan and Its Impact on Acoustic Propagation

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

A cold eddy was detected east of Taiwan. The two-dimensional (2-D) eddy structure for the cold eddy was constructed with Argo data. Results show that the eddy structure follows that of an ellipsoid, where the largest anomaly occurs near the center at almost 400 m depth. The horizontal diameter was 200 km, and the vertical diameter was 500 m. The 2-D sound speed profile feature model for the cold eddy based on the Argo profiles was established with the EOF method. With the feature model, acoustic propagation through both a stationary eddy and a moving eddy was investigated. Results suggest that the presence of the cold eddy could push the convergence zone up to 4 km closer to the source, where it acts as a convex mirror to focus the energy. The movement of the eddy would affect the transmission loss of the first group ray arrivals by about 1 dB, the time delay by about 0.01 s, and the receiver angle by about 0.8° when the source and the receiver were at 300 m depth and the receiver was located 300 km away from the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Levenson, C., Doblar, R.A.: Long range acoustic propagation through the Gulf Stream. J. Acoust. Soc. Am. 59(5), 1134–1141 (1976)

    Article  Google Scholar 

  2. Spindel, R.C., Spiesberger, J.L.: Multipath variability due to the Gulf Stream. J. Acoust. Soc. Am. 69(4), 982–988 (1981)

    Article  Google Scholar 

  3. Mellberg, L.E., Robinson, A.R., Botseas, G.: Modeled time variability of acoustic propagation through a Gulf Stream meander and eddies. J. Acoust. Soc. Am. 87(3), 1044–1054 (1990)

    Article  Google Scholar 

  4. Abbot, P., Celuzza, S., Dyer, I., et al.: Effects of East China sea shallow-water environment on acoustic propagation. IEEE J. Ocean. Eng. 28(2), 192–211 (2003)

    Article  Google Scholar 

  5. Luo, J., Badiey, M., Lin, Y.: Horizontal focusing/defocusing due to shallow water internal waves. J. Acoust. Soc. Am. 127(3), 1786 (2010). (SWARM)

    Article  Google Scholar 

  6. Apel, J.R., Badiey, M., Chiu, C.S., et al.: An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Ocean. Eng. 22(3), 465–500 (1997)

    Article  Google Scholar 

  7. Worcester, P.F., Dzieciuch, M.A., Mercer, J.A., et al.: The North Pacific acoustic laboratory deep-water acoustic propagation experiments in the Philippine sea. J. Acoust. Soc. Am. 134(4), 3359–3375 (2012)

    Article  Google Scholar 

  8. Chen, C., Lei, B., Ma, Y.L., et al.: Investigating sound speed profile assimilation: an experiment in the Philippine Sea[J]. Ocean Eng. 124, 135–140 (2016)

    Article  Google Scholar 

  9. Chen, C., Yang, K., Duan, R., Ma, Y.: Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio extension. Appl. Ocean Res. 68, 1–10 (2017). https://doi.org/10.1016/j.apor.2017.08.001

    Article  Google Scholar 

  10. Chen, C., Yang, K.D., Ma, Y.L., et al.: Comparison of surface duct energy leakage with bottom-bounce energy of close range propagation[J]. Chin. Phys. Lett. 33(10), 104302 (2016)

    Article  Google Scholar 

  11. Gordon, A.L.: Interocean exchange of thermocline water. J. Geophys. Res. 91(91), 5037–5046 (1986). https://doi.org/10.1029/JC091iC04p05037

    Article  Google Scholar 

  12. CATOC Consortium: Ocean climate change: comparison of acoustic tomography, satellite altimetry, and modeling. Science 281(5381), 1327–1332 (1998)

    Article  Google Scholar 

  13. Suga, T., Takei, Y., Hanawa, K.: Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J. Phys. Oceanogr. 27, 140–152 (1997). https://doi.org/10.1175/1520-0485(1997)027%3c0140:TDITNP%3e2.0.CO;2

    Article  Google Scholar 

  14. Bingham, F.M., Suga, T.: Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001. Ocean Sci. 3(1), 61–70 (2006). https://doi.org/10.5194/os-2-61-2006

    Article  Google Scholar 

  15. Ohno, Y., Iwasaka, N., Kobashi, F., et al.: Mixed layer depth climatology of the North Pacific based on Argo observations. J. Oceanogr. 65(1), 1–16 (2009)

    Article  Google Scholar 

  16. Li, J., Yang, K.D., Lei, B., et al.: Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean. Acta Phys. Sin. 61(8), 282–299 (2012). (in Chinese)

    Google Scholar 

  17. Jayne, S.R., Hogg, N.G., Waterman, S.N., et al.: The Kuroshio extension and its recirculation gyres, Deep Sea Res. Part I Oceanogr. Res. Pap. 56(12), 2088–2099 (2009)

    Article  Google Scholar 

  18. Taguchi, B., Qiu, B., Nonaka, M., et al.: Decadal variability of the Kuroshio extension: mesoscale eddies and recirculations. Ocean Dyn. 60(3), 673–691 (2010)

    Article  Google Scholar 

  19. Qiu, B., Chen, S.: Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. J. Phys. Oceanogr. 35(4), 458–473 (2005)

    Article  Google Scholar 

  20. Wang, G., Su, J., Chu, P.C.: Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophys. Res. Lett. 30(21), OCE 6-1 (2003)

  21. Chelton, D.B., Schlax, M.G., Samelson, R.M., et al.: Global observations of large oceanic eddies[J]. Geophys. Res. Lett. 34(15), 87–101 (2007)

    Article  Google Scholar 

  22. Chaigneau, A., Gizolme, A., Grados, C.: Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns[J]. Prog. Oceanogr. 79(s 2–4), 106–119 (2008)

    Article  Google Scholar 

  23. Chaigneau, A., Texier, M.L., Eldin, G., et al.: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats[J]. J. Geophys. Res. Atmos. 116(C11), 476–487 (2011)

    Article  Google Scholar 

  24. Zhang, Z., Zhang, Y., Wang, W., et al.: Universal structure of mesoscale eddies in the ocean[J]. Geophys. Res. Lett. 40(14), 3677–3681 (2013)

    Article  Google Scholar 

  25. Lovett, J.R.: Merged seawater sound-speed equations[J]. J. Acoust. Soc. Am. 63(63), 1713–1718 (1978)

    Article  Google Scholar 

  26. Du, B.L., Song, X.J.: A method applying empirical orthogonal function analysis to predict the sea surface temperature[J]. Acta Oceanol. Sin. 3(1), 14–27 (1981)

    Google Scholar 

  27. Porter, M.B., Bucker, H.P.: Gaussian beam tracing for computing ocean acoustic fields[J]. J. Acoust. Soc. Am. 82(4), 1349–1359 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The sea surface height data were made available on the AVISO web (ftp://ftp.aviso.altimetry.fr/). The Argo URL (http://argo.jcommops.org) data were made available by the China Argo real-time data center on the Web.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenggang Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Gao, Y., Yan, F. et al. Delving into the Two-Dimensional Structure of a Cold Eddy East of Taiwan and Its Impact on Acoustic Propagation. Acoust Aust 47, 185–193 (2019). https://doi.org/10.1007/s40857-019-00160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-019-00160-7

Keywords

Navigation