Skip to main content

Advertisement

Log in

Glycan-binding profile of DC-like cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-“vector” it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAcβ bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1–3Galβ (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DCs:

Dendritic cells

Glyc:

Glycan residue

fluo:

Fluorescein residue

LPS:

Lipopolysaccharide

PAA:

Polyacrylamide

PBS:

Phosphate buffer saline

PMA:

Phorbol 12-myristate 13-acetate

TBSCa:

tris-buffer, containing 2 mM CaCl2

TBSACa:

TBSCa, containing 2 mM BSA

Versene solution:

PBS containing 0.02% (w/v) EDTA

References

  1. Johannssen, T., Lepenies, B.: Glycan-based cell targeting to modulate immune responses. Trends Biotechnol. 35, 334–346 (2017)

    Article  CAS  Google Scholar 

  2. Project of foundation for assistance to small innovative enterprises “Self-replicating RNA vaccine against Hepatitis C virus genotype 2, targeted to dendritic cells” (8 #9889р/16992); ERA-NET-Rus project “HCRus”, grant number ERANetRUS 081

  3. UniVaxA project “Universal influenza vaccine through synthetic dendritic cell-targeted self-replicating RNA vaccines” (EU FP7 Project UniVax (HEALTH-F3-2013-601738) Contract No. 601738), www.univax-fp7.eu

  4. Lepenies, B., Lee, J., Sonkaria, S.: Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv. Drug Deliv. Rev. 65, 1271–1281 (2013)

    Article  CAS  Google Scholar 

  5. Unger, W.W.J., van Beelen, A.J., Sven, C., Bruijns, S.C., Joshi, M., Fehres, C.M., van Bloois, L., Verstege, M.I., Ambrosini, M., Kalay, H., Nazmi, K., Bolscher, J.G., Hooijberg, E., de Gruijl, T.D., Storm, G., van Kooyk, Y.: Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DCS-SIGN on dendritic cells. J. Control. Release. 160, 88–95 (2012)

    Article  CAS  Google Scholar 

  6. Garćia-Vallejo, J., Ambrosini, M., Overbeek, A., van Riel, W.E., Bloem, K., Unger, W.W.J., Chiodo, F., Bolscher, J.C., Nazmi, K., Kalay, H., van Kooyk, Y.: Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Mol. Imuunol. 53, 387–397 (2012)

    Article  Google Scholar 

  7. Al-Barwani, F., Young, S.L., Baird, M.A., Larsen, D.S., Ward, V.K.: Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS. (2014). https://doi.org/10.1371/journal.pone.01045232014

  8. Climent, N., García, I., Marradi, M., Chiodo, F., Maleno, M.J., Gatell, J.M., García, F., Penadés, S., Plana, M.: Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine. 14, 339–351 (2018)

    Article  CAS  Google Scholar 

  9. Kawasaki, N., Rillahan, C.D., Cheng, T.-Y., van Rhijn, I., Macauley, M.S., Moody, D.B., Paulson, J.C.: Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J. Immunol. 193, 1560–1566 (2014)

    Article  CAS  Google Scholar 

  10. MacDonald, K., Munster, D., Clark, G., Dzionek, A., Schmitz, J., Hart, D.: Characterization of human blood dendritic cells subsets. Blood. 10, 4512–4520 (2002)

    Article  Google Scholar 

  11. Harman, A., Bye, C., Nasr, N., Sandgren, K., Kim, M., Mercier, S.K., Botting, R., Lewin, S., Cunningham, A., Cameron, P.: Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J. Immunol. 190, 66–79 (2013)

    Article  CAS  Google Scholar 

  12. Satpathy, A., Wu, X., Albring, J., Murphy, K.: Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012)

    Article  CAS  Google Scholar 

  13. Hu, Z., Zaborski, M., MacLeod, R., Quentmeier, H., Drexler, H.: Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia. 10, 1025–1040 (1996)

    CAS  PubMed  Google Scholar 

  14. Quentemeier, H., Duschl, A., Hu, Z.-B., Schnaar, B., Zaborski, M., Drecler, H.G.: MUTZ-3, a monocytic model cell line for interleukin-4 and lipopolysaccharide studies. Immunology. 89, 606–612 (1996)

    Article  Google Scholar 

  15. Masterson, A., Sombroek, C., de Gruijl, T., Graus, Y., van der Vliet, H., Lougheed, S., van den Eertwegh, A., Pinedo, H., Scheper, R.: MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+precursors. Blood. 100, 701–703 (2002)

    Article  CAS  Google Scholar 

  16. Larsson, K., Lindstedt, M.C.: Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology. 117, 156–166 (2006)

    Article  CAS  Google Scholar 

  17. Santegoets, S., van den Eertwegh, A., van de Loosdrecht, A., Scheper, R., de Gruijl, T.: Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J. Leuk. Biol. 84, 1364–1373 (2008)

    Article  CAS  Google Scholar 

  18. Hoefnagel, M., Vermeulen, J., Scheper, R., Vandebriel, R.: Response of MUTZ-3 dendritic cells to the different components of the Haemophilus influenzae type B conjugate vaccine: towards an in vitro assay for vaccine immunogenicity. Vaccine. 29, 5114–5121 (2011)

    Article  CAS  Google Scholar 

  19. Shen, Z., Reznikoff, G., Dranoff, G., Rock, K.: Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723–2730 (1997)

    CAS  PubMed  Google Scholar 

  20. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., Tada, K.: Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer. 26, 171–176 (1980)

    Article  CAS  Google Scholar 

  21. Rapoport, E., Khaidukov, S., Gaponov, A., Pazynina, G., Tsygankova, S., Ryzhov, I., Belyanchikov, I., Milona, P., Bovin, N., McCullough, K.C.: Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj. J. 35, 191–203 (2018)

    Article  CAS  Google Scholar 

  22. Bovin, N., Korchagina, E., Zemlyanukhina, T., Byramova, N., Galanina, O., Zemlyakov, A., Ivanov, A., Zubov, V., Mochalova, L.: Synthesis of polymeric neoglycoconjugates based on N-substituted polyacrylamides. Glycoconj. J. 10, 142–151 (1993)

    Article  CAS  Google Scholar 

  23. Moiseeva, E.V.: Anti-Breast Cancer Drug Testing. Lambert Academic Publishing, Saarbrücken, Original approaches. Novel set of mouse models (2009)

    Google Scholar 

  24. Ogasawara, N., Kojima, T., Go, M., Fuchimoto, J., Kamekura, R., Koizumi, J., Ohkuni, T., Masaki, T., Murata, M., Tanaka, S.: Induction of JAM-A during differentiation of human THP-1 dendritic cells. Biochem. Biophys. Res. Commun. 389, 543–549 (2009)

    Article  CAS  Google Scholar 

  25. Butler, M., Morel, A.S., Jordan, W.J., Eren, E., Hue, S., Shrimpton, R.E., Ritter, M.A.: Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation. Immunology. 120, 362–371 (2007)

    Article  CAS  Google Scholar 

  26. Moyo, N.A., Marchi, E., Steinbach, F.: Differentiation and activation of equine monocyte-derived dendritic cells are not correlated with CD206 or CD83 expression. Immunology. 139, 472–483 (2013)

    Article  CAS  Google Scholar 

  27. Rhule, A., Rase, B., Smith, J.R., Shepherd, D.M.: Toll-like receptor ligand-induced activation of murine DC2.4 cells is attenuated by Panax notoginseng. J. Ethnopharmacol. 116, 179–186 (2008)

    Article  CAS  Google Scholar 

  28. Li, Y., Wang, L., Chen, S.: Endogenous toll-like receptor ligands and their biological significance. J. Cell. Mol. Med. 14, 2592–2503 (2010)

    Article  Google Scholar 

  29. He, T., Tang, H., Xu, S., Moyana, T., Xiang, J.: Interferon γ stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell. Cell. Mol. Immunol. 4, 105–111 (2007)

    CAS  Google Scholar 

  30. McCullough, K.C., Sharma, R.: Dendritic cell endocytosis essential for viruses and vaccines. In: Ghosh, A. (ed.) Biology of Myelomonocytic Cells, pp. 99–128. InTech, Rijeka (2017)

    Google Scholar 

  31. McCullough, K.C., Sáiz, M., Summerfield, A.: Innate to adaptive: immune defence handling of foot-and-mouth disease virus in Sobrino, F., Domingo, E. (eds.) Foot-and-mouth disease virus: current research and emerging trends, pp. 211–274. Caister Academic Press, Norfolk (2017)

    Chapter  Google Scholar 

  32. Boltjes, A., van Wijk, F.: Human dendritic cell functional specialization in steady-state and inflammation. Front. Immunol. https://doi.org/10.3389/fimmu.2014.00131 (2014)

  33. Data of Consortium for functional glycomics, http://www.functionalglycomics.org

  34. Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D., Crocker, P.: Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood. 97, 288–296 (2001)

    Article  CAS  Google Scholar 

  35. Wielgat, P., Trofimiuk, E., Gsarmomysy, R., Holownia, A.: Braszko: Sialylation pattern in lung epithelial cell line and siglecs expression in monocytic THP-1 cells as cellular indicators of cigarette smoke – induced pathology in vitro. J. Exp. Lung Res. 44, 167–177 (2018)

    Article  Google Scholar 

  36. Lahm, H., André, S., Hoeflich, A., Fischer, J., Sordat, B., Kaltner, H., Wolf, E., Gabius, H.-J.: Comprehesive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implicantions for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol. 127, 375–386 (2001)

    Article  CAS  Google Scholar 

  37. Diaz-Silvestre, H., Espinosa-Cueto, P., Sanchez-Gonzalez, A., Esparza-Ceron, M., Pereira-Suarez, A., Bernal-Fernandez, G., Espitia, C., Mancilla, R.: The 19-kDa antigen of mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb. Pathog. 39, 97–107 (2005)

    Article  CAS  Google Scholar 

  38. Jin, C., Wu, L., Fang, M., Cheng, L., Wu, N.: Multiple signaling pathways are involved in the interleukine-4 regulated expression of DC-SIGN in THP-1 cell line. J. Biomed. Biotechnol. (2012). https://doi.org/10.1155/2012/357060

    Google Scholar 

  39. Higashi, N., Fujioka, K., Denda-Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata-Takeuchi, M., Sano, Y., Suzuki, N., Yamamoto, K., Matsushima, K., Irimura, T.: The macrophage C-type lectin specificfor galactose/N-acetylgalactosamine is an endocytic receptor expressed onmonocyte-derived immature dendritic cells. J. Biol. Chem. 277, 20686–20693 (2002)

    Article  CAS  Google Scholar 

  40. Tsuiji, M., Fujimori, M., Ohashi, Y., Higashi, N., Onami, T.M., Hedrick, S.M., Irimura, T.: Molecular cloning and characterization of a novel mouse macrophage C-type lectin, mMGL2, which has a distinct carbohydrate specificity from mMGL1. J. Biol. Chem. 277, 28892–28901 (2002)

    Article  CAS  Google Scholar 

  41. McCullough, K.C., Bassi, I., Démoulins, T., Thomann-Harwood, L., Ruggli, N.: Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Ther. Deliv. 3, 1077–1099 (2012)

    Article  CAS  Google Scholar 

  42. McCullough, K.C., Milona, P., Thomann-Harwood, L., Démoulins, T., Englezou, P., Suter, R., Ruggli, N.: Self-amplifying replicon RNA vaccine delivery to dendritic cells by synthetic nanoparticles. Vaccines. 2, 735–754 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was generously supported in part by grant 16-04-01084 of the Russian Foundation for Basic Research (E.R., E. M., D.A., S. Kh., G.P., S.Ts.), and EU FP7 Project UniVax (HEALTH-F3-2013-60173), grant number 601738 (N.B., K.M., E.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai V. Bovin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thesaurus

•Classical dendritic cells – the DCs that are considered to be the most potent antigen-presenting cells, and therefore also referred to as “professional antigen-presenting cells”; also termed conventional DCs.

•Monocytes (Mo) – the cell population of myeloid origin characterized in humans as CD16neg with a CD14 expression relative to other cells described as CD14high.

•CD14low/-CD16+ CD83+ cells – the human blood mononuclear cells containing DC subpopulations

Electronic supplementary material

Fig. 1S

Probing of CD16+ and CD11c+ cells for Adi binding, assessed by flow cytometry. Flow cytometer plots show expression of CD11c+ and CD16+ on subpopulations of murine monocytes in terms of their SSC (A, B, E, F). Histograms show binding profiles of CD11c+ and CD16+ subpopulations to the glycoprobe Adi (C, D, G, H). The number given for the rectangle gate (A, B, E, F), and for the black histogram gate (C, D, G, H) represent the percentage of the positive CD16+ and CD11c+ cells within monocytes from blood of BALB/c and BYRB-Rb (8.17) strains. SSC, side scatter; FL, mean of fluorescence intensity. In the C, D, G, H histograms the logs of fluorescence intensity (x-axis) are plotted against cell number (y-axis, counts) (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapoport, E.M., Moiseeva, E.V., Aronov, D.A. et al. Glycan-binding profile of DC-like cells. Glycoconj J 37, 129–138 (2020). https://doi.org/10.1007/s10719-019-09897-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09897-9

Keywords

Navigation