Skip to main content
Log in

WKB Asymptotics and Spectral Deformation in Semi-classical Limit

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Phase-integral method is applied to study semi-classical limit for the spectral problem related to dynamical system describing quantum mechanical evolution with space-time reflection symmetry. The main goal of the paper is to investigate the relationship between analytic properties of the corresponding potential and the structure of limiting spectral graph. Quantization conditions of Bohr-Sommerfeld type are derived specifying localization of the spectrum for the model problem with a one-parameter family of polynomial potentials treated as deformation of a linear one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heading J. An introduction to phase-integral methods. New York: Wiley; 1962.

    MATH  Google Scholar 

  2. Fedoryuk MV. Asymptotic analysis. Linear ordinary differential equations. Berlin: Springer; 1993.

    MATH  Google Scholar 

  3. Dorodnitsyn AA. 1960. Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, AMS Transl Ser 2, vol 16, Amer Math Soc, Providence, RI, pp 1–101.

  4. Maslov VP. Asymptotics of eigenvalues for Schroedinger equation in one-dimensional and radially symmetric cases. Russian Math Surveys 1960;15(4):220–1.

    Google Scholar 

  5. Dnestrovskii YN, Kostomarov DP. Asymptotic forms of the eigenvalues of non-selfadjoint boundary value problems. Comput Math and Math Phys 1964;4(2):267–77.

    Article  Google Scholar 

  6. Fedoryuk MV. Asymptotic properties of eigenvalues and eigenfunctions of the Srurm-Liouville operator with a complex-valued polynomial potential. Differ Equat 1974;8 (5):616–20.

    MathSciNet  Google Scholar 

  7. Ya PA. Stokes constants for Schroedinger equation with polynomial potential. Theoret and Math Phys 1982;51(1):350–62.

    Article  Google Scholar 

  8. Stepin SA. Non-selfadjoint singular perturbations: a model of transition from a discrete to a continuous spectrum. Russian Math Surveys 1995;50(6):1311–3.

    Article  MathSciNet  Google Scholar 

  9. Stepin SA, Arzhanov AA. Quasiclassical spectral asymptotics and the Stokes phenomenon for the Weber equation. Dokl Math 2001;63(3):306–9.

    MATH  Google Scholar 

  10. Shin KC. On the reality of the eigenvalues for a class of of \(\mathcal {P}\mathcal {T}\)-symmetric operators. Comm Math Phys 2002;229(3):543–64.

    Article  MathSciNet  Google Scholar 

  11. Stepin SA, Titov VA. On the concentration of spectrum in the model problem of singular perturbation theory. Dokl Math 2007;75(2):197–200.

    Article  MathSciNet  Google Scholar 

  12. Esina AI, Shafarevich AI. Quantization conditions on Riemannian surfaces and the semiclassical spectrum of the Schroedinger operator with complex potential. Math Notes 2010;88(2):209–27.

    Article  MathSciNet  Google Scholar 

  13. Bender CM, Johnes HF. 2012. WKB analysis of \(\mathcal {P}\mathcal {T}\)-symmetric Sturm-Liouville problems, J Phys A, vol 45.

  14. Esina AI, Shafarevich AI. Analogs of Bohr-Sommerfeld-Maslov quantization conditions on Riemann surfaces and spectral series of non-selfadjoint operators. Russ J Math Phys 2013;20(2):172–81.

    Article  MathSciNet  Google Scholar 

  15. Esina AI., Shafarevich AI. Semiclassical asymptotics of eigenvalues for non-selfadjoint operators and quantization conditions on Riemann surfaces. Acta Polytechnika 2014;54(2):101–5.

    Article  Google Scholar 

  16. Stepin SA, Fufaev VV. Phase integral method in the problem of quasiclassical localization of spectra. Dokl Math 2015;91(3):318–22.

    Article  MathSciNet  Google Scholar 

  17. Giordanelli I, Graf GM. The real spectrum of the imaginary cubic oscillator: an expository proof. Ann Henri Poincare 2015;16(1):99–112.

    Article  MathSciNet  Google Scholar 

  18. Stepin SA, Fufaev VV. The phase-integral method in a problem of singular perturbation theory. Izv Math 2017;81(2):359–90.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Stepin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us first specify the critical valueκ = κ0 > 0 of deformation parameter at which topological type of limiting spectral graph Γ(κ) changes so that for κ > κ0 an additional vertical edge [iμ, iK] arises outgoing from the node iμ = Γ+ ∩Γ where \( \text {Re} \widehat {\Phi }(i\mu )\) = 0.

Assertion 1

Let t0 be a unique real root of the polynomial 23t5 − 5(t3 + t2) − 4. Then one has

$$ K_{-}(\kappa) \gtrless \mu(\kappa) ,\quad \kappa \gtrless \kappa_{0} = \frac{1-{t_{0}^{2}}}{1+{t_{0}^{2}}/2} . $$

Proof

Due to the fact that given κ > 0 the quantity \( \text {Re} \widehat {\Phi }(a+ib) \) increases in variable b for fixed a ∈ [0, Qκ(1)] the critical value κ = κ0 can be characterized in terms of function \( {\Upsilon }(\kappa )= \text {Re} \widehat {\Phi }(iK_{-}(\kappa )) \) in the following way: Υ(κ0) = 0 and Υ(κ)(κκ0) < 0 if κκ0. To evaluate κ0 it suffices to explicitly calculate the integral

$$ \begin{array}{@{}rcl@{}} \frac{(2\kappa)^{3/4}}{(1-\kappa)^{5/4}} \widehat{\Phi}(iK_{-}) &=& e^{i\pi/4} \frac{(2\kappa)^{3/4}}{(1-\kappa)^{5/4}}\!{\int}_{\xi(iK_{-}\!)}^{1}\!\!\sqrt{Q_{\kappa}(z)-iK_{-}} dz \\ &=& e^{i\pi/4}\!{\int}_{-i/\sqrt{3}}^{C(\kappa)}\sqrt{w^{3}+w+2i/3\sqrt{3}} dw = \frac2{\sqrt{3}} r^{3/2}e^{3i\varphi/2} \\ &&- \frac25 r^{5/2}e^{5i\varphi/2} - \frac45 \sqrt[4]{3} , \end{array} $$

where \( w=C(\kappa )z, C(\kappa )=\sqrt {2\kappa /(1-\kappa )}, \varphi = \arctan \left (C(\kappa )\sqrt {3}/2\right ), r= 2/(\sqrt {3}\cos \nolimits \varphi ), \) so that

$$ \frac{(2\kappa)^{3/4}}{(1-\kappa)^{5/4}} {\Upsilon}(\kappa) = \frac{2^{3/2}}{3^{5/4}\cos^{3/2}\varphi} \cos\frac{3\varphi}2 - \frac{2^{5/2}}{3^{5/4}5 \cos^{5/2}\varphi} \cos\frac{5\varphi}2 - \frac25 3^{1/4} . $$

Thus equation Υ(κ) = 0 reduces to the form \( 5(\cos \nolimits ^{3}\varphi +\cos \nolimits ^{2}\varphi )+4=23\cos \nolimits ^{5}\varphi \) and since the polynomial 23t5 − 5(t3 + t2) − 4 has a unique real root t0 ∈ [0.8613, 0.8614] it follows that Υ(κ) vanishes at point \( \kappa =\kappa _{0}=(2-2{t_{0}^{2}})/(2+{t_{0}^{2}})\in [ 0.1881,0.1884] \) and moreover

$$ {\Upsilon}(\kappa) = \text{Re}\left( e^{i\pi/4}{\int}_{C(\kappa_{0})}^{C(\kappa)}\!\!\sqrt{w^{3}+w+2i/3\sqrt{3}} dw\right) \gtrless 0 ,\quad \kappa\gtrless\kappa_{0} . $$

Our next goal is to establish existence and uniqueness of the triple point \( {\Lambda } ={\Lambda } (\kappa )\in {\Gamma }_{+}^{(j)}, j=1,2,3, \) being a Y-shaped junction node of the limit spectral graph Γ = Γ(κ) in the case when κ ∈ [− 1,− 1/5). □

Assertion 2

For κ ∈ [− 1,− 1/5) there exists a unique intersection point Λ = Λ(κ) of level-lines \( \text {Re} \widetilde {\Phi }(\lambda )=0 \) and \( \text {Re}\left (\widetilde {\Phi }(\lambda )-\widehat {\Phi }(\lambda )\right )=0 \) which prove to be the graphs of monotonic functions b = f2(a) and b = f3(a) such that f2(K+) = f3(Qκ(1)) = 0 and f2(Qκ(1)) < 0, f3(K+) < 0.

Proof

By the same arguments as in the case of model potential Q− 1(z) the segment \( \widehat {\ell }=\{Q_{\kappa }(1)+ e^{-i\pi /6}\mathbb {R}_{+}\}\cap {\Pi } \) and the curve \( \ell =\{Q_{\kappa }(r+e^{i\pi /8}\mathbb {R}_{+})\}\cap {\Pi } \) which proves to be the graph of increasing function are shown to lie below the level-lines \( \text {Re}\left (\widetilde {\Phi }(\lambda )-\widehat {\Phi }(\lambda )\right )=0 \) and \( \text {Re} \widetilde {\Phi }(\lambda )=0 \) respectively. Beforehand, let us verify that

$$ \partial \text{Re}\left( \widehat{\Phi}(\lambda)-\widetilde{\Phi}(\lambda)\right)\left/ \partial b = \text{Im}\left( \widetilde{\Phi} '(\lambda)-\widehat{\Phi} '(\lambda)\right) < 0\right. $$

in π and besides

$$ \partial \text{Re}\left( \widehat{\Phi}(\lambda)-\widetilde{\Phi}(\lambda)\right)\left/ \partial a = \text{Re}\left( \widehat{\Phi} '(\lambda)-\widetilde{\Phi}^{\prime}(\lambda)\right) < 0\right. $$

in the subdomain \( \widetilde {\Pi }\subset {\Pi } \) located above the curve and the segment \( \widehat {\ell }. \) To evaluate the imaginary part of the derivative

$$ \widetilde{\Phi} '(\lambda)-\widehat{\Phi} '(\lambda) = \frac{e^{3i\pi/4}}2{\int}_{1}^{\eta(\lambda,\kappa)}\!\!\!\!\frac{dz}{\sqrt{\lambda-Q_{\kappa}(z)}} ,$$

we will integrate over the path composed of the segment [1, η(a, κ)] and the arc of the level-line ReQκ(z) = a passing from η(a, κ) to η(λ, κ) so that the required sign-definiteness of \( \text {Im}\left (\widetilde {\Phi } '(\lambda )-\widehat {\Phi } '(\lambda )\right ) \) follows from the estimate \( \arg \left (\left (\lambda -Q_{\kappa }(z)\right )^{-1/2}\!dz\right )\in (\pi /4,5\pi /4) \) valid along the integration path. As regards estimation of the real part for \( \widehat {\Phi } '(\lambda )-\widetilde {\Phi } '(\lambda ) \), we choose integration path with parametrization \( z(s,\lambda )=\eta \left (\lambda (1-s) + Q_{\kappa }(1)s;\kappa \right ),\)s ∈ [0, 1], so that

$$ \widehat{\Phi} '(\lambda)-\widetilde{\Phi} '(\lambda) = \frac{e^{-i\pi/4}}2{{\int}_{0}^{1}}\frac{\sqrt{\lambda-Q_{\kappa}(1)} ds} {\left( 6\kappa z(s,\lambda)^{2}+ (1-\kappa)\right)\sqrt{s}} $$

where \( \text {Re}\sqrt {\lambda -Q_{\kappa }(1)}>0. \) In order to establish sign definiteness of \( \text {Re}\left (\widehat {\Phi } '(\lambda )-\widetilde {\Phi } '(\lambda )\right ) \) for \( \lambda \in \widetilde {\Pi } \), we first note that \( \arg \!\left (6\kappa \eta (\lambda ;\kappa )^{2}\!+(1-\kappa )\right )\in (\pi ,7\pi /6) \) where Reη(λ; κ) < 1 since the curve \( Q_{\kappa }(1+i\mathbb {R}_{+})\cap {\Pi } \) lies below the segment \( \widehat {\ell } \) and therefore \( \arg \left (6\kappa z(s,\lambda )^{2}+ (1-\kappa )\right )\in (\pi ,7\pi /6) \) because \( [ Q_{\kappa }(1),\lambda ]\subset \widetilde {\Pi }. \)

Moreover, making use of the above integral representation of \( \widehat {\Phi } '(\lambda )-\widetilde {\Phi } '(\lambda ) \), one can straightforwardly verify that level-line \( \text {Re}\left (\widetilde {\Phi }(\lambda )-\widehat {\Phi }(\lambda )\right )=0 \) is lying above the semi-axis \( Q_{\kappa }(1)+ e^{-i\pi /6}\mathbb {R}_{+} \) and hence its segment belonging to \( \widetilde {\Pi } \) is the graph of monotonically decreasing function b = f3(a) since

$$ f^{\prime}_3(a) = -\left( \partial{\text{Re}}\left( \widetilde{\Phi}(\lambda)-\widehat{\Phi}(\lambda)\right)\left/ \partial a\right)\left( \partial{\text{Re}}\left( \widetilde{\Phi}(\lambda)-\widehat{\Phi}(\lambda)\right.)\right/ \partial b\right)^{-1}\!< 0 . $$

The proof will be complete if we show that level-line \( \text {Re} \widetilde {\Phi }(\lambda )=0 \) is located in π above the curve being the graph of monotonically increasing function b = f2(a). To this end, it clearly suffices to establish sign definiteness of partial derivatives

$$ \partial \text{Re} \widetilde{\Phi}(\lambda)\left/\partial a = \text{Re} \widetilde{\Phi} '(\lambda) < 0 ,\quad \partial \text{Re} \widetilde{\Phi}(\lambda)\right/\partial b = - \text{Im} \widetilde{\Phi} '(\lambda) > 0 $$

in π and the estimate \( \text {Re} \widetilde {\Phi }(\lambda )<0 \) which holds true for λ. To deal with the derivative

$$ \widetilde{\Phi} '(\lambda) = \frac{e^{3i\pi/4}}2{\int}_{\xi(\lambda;\kappa)}^{ \eta(\lambda\kappa)}\!\!\frac{dz}{\sqrt{\lambda-Q_{\kappa}(z)}}, $$

we choose integration path composed of the segment [ξ(a; κ), η(a; κ)] and the arcs of the level-line ReQκ(z) = a passing through the turning points ξ(λ; κ) and η(λ; κ). Monotonicity of \( \text {Re} \widetilde {\Phi }(a+ib) \) with respect to each of the variables a and b follows now from the estimate \( \arg \left (\left (\lambda -Q_{\kappa }(z)\right )^{-1/2}\!dz\right )\in (\pi /4,3\pi /4) \) valid along the integration path. In order to evaluate \( \text {Re} \widetilde {\Phi } (\lambda ) \) for λ, it makes sense to decompose the corresponding phase integral

$$ \widetilde{\Phi} (\lambda) = S(\xi,\widetilde{r};\lambda) + S(\widetilde{r},r;\lambda) + S(r,\eta;\lambda) $$

where ξ = ξ(λ; κ), η = η(λ; κ) and \( \widetilde {r}=\{ \xi + i\mathbb {R}_{+}\}\cap \{ r+e^{i\pi /8}\mathbb {R}_{-}\} \) and consider the summands separately. Since curve is the graph of increasing function and lies below the line \( K_{+}\!+ e^{i\pi /4}\mathbb {R}_{-} \), one has \( \arg (Q_{\kappa }(z)-\lambda )\in (\pi /4,\pi /2) \) for z ∈ [r, η] and λ so that ReS(r, η; λ) < 0. Due to the fact that curve \( \widetilde {\ell }=\{Q_{\kappa }(r+e^{i\pi /8}\mathbb {R}_{-})\}\cap {\Pi } \) is located above the line \( K_{+}\!+ e^{i\pi /4}\mathbb {R}_{-} \), the turning point ξ = ξ(λ) for λ lies below the semi-axis \( r+ e^{i\pi /8}\mathbb {R}_{+} \) and hence \( \text {Re} S(\xi ,\widetilde {r};\lambda )<0. \) Finally, taking into account that curves and \( \widetilde {\ell } \) are separated by the line \( K_{+}\!+ e^{i\pi /4}\mathbb {R}_{-} \), we obtain the estimate \( \pi /4<\arg \left (Q_{\kappa }(z)-\lambda \right )<5\pi /4 \) valid for \( z\in [ \widetilde {r},r] \) and λ which implies \( \text {Re} S(\widetilde {r},r;\lambda )<0. \)

Thus, we have established that level-lines \( \text {Re} \widetilde {\Phi }(\lambda )=0 \) and \( \text {Re}\left (\widetilde {\Phi }(\lambda )-\widehat {\Phi }(\lambda )\right )=0 \) possess a unique intersection Λ = Λ(κ) in π located above the curve and the segment \( \widehat {\ell } \) and being a triple point for the edges \( {\Gamma }_{+}^{(j)}, j=1,2,3, \) of the limit spectral graph Γ = Γ(κ). Moreover, numerical evaluation of the point \( {\Lambda } ={\Lambda } (\kappa )\in {\Gamma }_{+}^{(j)} \) reveals the following regularity phenomenon of approximate conservation law type

$$ \frac{ \text{Re} {\Lambda} (\kappa)-Q_{\kappa}(1)}{K_{+}- \text{Re} {\Lambda} (\kappa)} = 2,1 \pm 0,02 $$

which is strongly confirmed by the results of computer experiments presented below. □

The three different topological types of limit spectral configuration appearing in the problem under consideration and specified by Theorems 1–3 are illustrated in Figs. 14. Figures 1 and 2 exhibit spectral locus for potentials z ± z3/3 which correspond to the values of deformation parameter κ = 1/7 and κ = − 1/5. Figures 3 and 4 show asymptotic distribution of eigenvalues in the cases of potentials z ± 3z3/4 corresponding to κ = 3/11 and κ = − 3/5.

Moreover, at Figs. 5 and 6, one can observe semi-classical location of the spectrum for the problem in question with potentials 5z/6 − z3 and 2z/3 − z3 which in fact belong to the family Qκ(z) at points κ = − 3/2 and κ = − 3 from beyond the interval [− 1, 1].

Fig. 5
figure 5

Spectral graph for potential Q(z) = 5z/6 − z3

Fig. 6
figure 6

Spectral graph for potential Q(z) = 2z/3 − z3

Besides that making use of combined numerically-analytic method, we treat certain quadratic perturbations of potentials Qκ(z) under which spectral symmetry is broken. Figures 78910, and 11 below depict spectral locus for the problem (1)–(2) with potentials of the form 2z3 + z2/2 − τz where parameter τ successively takes the values 2, 7/4, 3/2, 5/4, 1.

Fig. 7
figure 7

Spectral graph for potential Q(z) = 2z3 + z2/2 − 2z

Fig. 8
figure 8

Spectral graph for potential Q(z) = 2z3 + z2/2 − 7z/4

Fig. 9
figure 9

Spectral graph for potential Q(z) = 2z3 + z2/2 − 3z/2

Fig. 10
figure 10

Spectral graph for potential Q(z) = 2z3 + z2/2 − 5z/4

Fig. 11
figure 11

Spectral graph for potential Q(z) = 2z3 + z2/2 − z

Finally, at Fig. 12, the asymptotic distribution of eigenvalues is plotted for the case of potential z3 + z2/4 + z.

Fig. 12
figure 12

Spectral graph for potential Q(z) = z3 + z2/4 + z

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepin, S.A., Fufaev, V.V. WKB Asymptotics and Spectral Deformation in Semi-classical Limit. J Dyn Control Syst 26, 175–198 (2020). https://doi.org/10.1007/s10883-019-09457-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-019-09457-2

Keywords

Mathematics Subject Classification (2010)

Navigation