Skip to main content

Advertisement

Log in

Coverage optimization of visual sensor networks for observing 3-D objects: survey and comparison

  • Survey Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Coverage is a basic and critical issue for design and deployment of visual sensor networks, however, the optimization problem is very challenging especially when considering coverage of three-dimensional (3-D) scenarios. This paper provides a brief survey of mainstream coverage optimization methods for visual sensor networks, including the greedy algorithm, genetic algorithm (GA), particle swarm optimization (PSO), binary integer programming (BIP) and differential evolution algorithm (DE). We provide an efficient open-source C++ implementation of these algorithms and compare their performance on a typical camera deployment problem for coverage of 3-D objects. In order to improve the computational efficiency, a parallel visual occlusion detection approach is proposed and implemented with graphic processing units (GPUs), which are then integrated into all of the aforementioned optimization approaches for a fair comparison. Evaluation results show that (1) the proposed parallel occlusion detection algorithm largely improves the computational efficiency; (2) among the five typical approaches, BIP has the best coverage performance yet with the highest time cost, and greedy algorithm is the fastest approach at the price of coverage performance; GA, PSO, and DE achieve a compromise between the performance and the time cost, while DE has better coverage performance and less time cost than PSO and GA. These results could serve as engineering guidelines and baselines for further improvement of coverage optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The optimizer Gurobi can be found at http://www.gurobi.com.

  2. An open source implementation of these approaches could be found at https://github.com/MobFlyRobLab/COVSN for interested readers to repeat the evaluation results.

References

  • Abdelkader, A., Mokhtar, M., El-Alfy, H.: Angular Heuristics for coverage maximization in multi-camera surveillance. In: Proceedings of IEEE Internatianal Conference on Advanced Video and Signal-Based Surveilliance, pp. 373–378 (2008)

  • Aghajan, H., Cavallaro, A.: Multi-Camera Networks: Principles and Applications. Academic Press, New York (2009)

    Google Scholar 

  • Ai, J., Abouzeid, A.A.: Coverage by directional sensors in randomly deployed wireless sensor networks. J. Comb. Optim. 11(1), 21–41 (2006)

    MathSciNet  MATH  Google Scholar 

  • Alarcon-Herrera, J.L., Chen, X., Zhang, X.: Viewpoint selection for vision systems in industrial inspection. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4934–4939 (2014a)

  • Alarcon-Herrera, J.L., Cheng, X., Zhang, X.: Viewpoint selection for vision systems in industrial inspection. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4934–4939 (2014b)

  • Altahir, A.A., Asirvadam, V.S., Hamid, N.H., Sebastian, P., Saad, N., Ibrahim, R., Dass, S.C.: Modeling multicamera coverage for placement optimization. IEEE Sens. Lett. 1(6), 1–4 (2017a)

    Google Scholar 

  • Altahir, A.A., Asirvadam, V.S., Hamid, N.H., Sebastian, P., Saad, N., Ibrahim, R., Dass, S.C.: Optimizing visual surveillance sensor coverage using dynamic programming. IEEE Sens. J. 17(11), 3398–3405 (2017b)

    Google Scholar 

  • Altahir, A.A., Asirvadam, V.S., Hamid, N.H., Sebastian, P., Saad, N., Ibrahim, R., Dass, S.C.: Optimizing visual sensor coverage overlaps for multiview surveillance systems. IEEE Sens. J. 18(1), 4544–4552 (2018)

    Google Scholar 

  • Azin, N., Saeed, A., Harras, K., Mohamed, A.: On target coverage in mobile visual sensor networks. In: Proceedings of the 12th ACM International Symposium on Mobility Management and Wireless Access, pp. 39–46 (2014)

  • Basgumus, A., Mustafa, N., Gunes, Y., Ahmet, A.: Performance comparison of the differential evolution and particle swarm optimization algorithms in free-space optical communications systems. Adv. Electr. Comput. Eng. 15(2), 17–22 (2015)

    Google Scholar 

  • Bodor, R., Drenner, A., Schrater, P., Papanikolopoulos, N.: Optimal camera placement for automated surveillance tasks. J. Intell. Rob. Syst. 50(3), 257–295 (2007)

    Google Scholar 

  • Charfi, Y., Wakamiya, N., Murata, M.: Challenging issues in visual sensor networks. IEEE Wirel. Commun. 16(2), 44–49 (2009)

    Google Scholar 

  • Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 393–408 (2004a)

    Google Scholar 

  • Chen, S.Y., Li, Y.F.: Automatic sensor placement for model-based robot vision. IEEE Trans. Syst. Man Cybern. 34(1), 393–408 (2004b)

    Google Scholar 

  • Chen, S.Y., Li, Y.F., Zhang, J.W., Wang, W.L.: Active Sensor Planning for Multiview Vision Tasks. Springer, Berlin (2008)

    Google Scholar 

  • Chen, S.Y., Li, Y.F., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. 30(11), 1343–1377 (2011)

    Google Scholar 

  • Chen, C., Mukhopadhyay, S.C., Chuang, C., Lin, T., Liao, M., Wang, Y., Jiang, J.: A hybrid memetic framework for coverage optimization in wireless sensor networks. IEEE Trans. Cybern. 45(10), 2309–2322 (2014)

    Google Scholar 

  • Chow, K.Y., Lui, K. S., Lam, E. Y.: Maximizing angle coverage in visual sensor networks. In: Proceedings of IEEE International Conference on Communications, pp. 3516–3521 (2007)

  • Civicioglu, P., Erkan, B.: A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 39(4), 315–346 (2013)

    Google Scholar 

  • Costa, D.G., Guedes, L.A.: The coverage problem in video-based wireless sensor networks:a survey. Sensors 10(9), 8215–8247 (2010)

    Google Scholar 

  • Costa, D.G., Duran-Faundez, C., Bittencourt, J.C.: Availability issues for relevant area coverage in wireless visual sensor networks. In: CHILEAN Conference on Electrical, pp. 1–6. Electronics Engineering, Information and Communication Technologies (CHILECON) (2017)

  • Deb, A., Roy, J.S., Gupta, B.: Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas. IEEE Trans. Antennas Propag. 62(8), 3920–3928 (2014)

    MATH  Google Scholar 

  • Deif, D.S., Gadallah, Y.: Classification of wireless sensor networks deployment techniques. IEEE Commun. Surv. Tutor. 16(2), 834–855 (2014)

    Google Scholar 

  • Fanti, M.P., Faraut, G., Lesage, J.J., Roccotelli, M.: An integrated framework for binary sensor placement and inhabitants location tracking. IEEE Trans. Cybern. 48(1), 154–160 (2018)

    Google Scholar 

  • Fu, Y.G., Zhou, J., Deng, L.: Surveillance of a 2D plane area with 3D deployed cameras. Sensors 14(2), 1988–2011 (2014)

    Google Scholar 

  • Guvensan, M.A., Yavuz, A.G.: On coverage issues in directional sensor networks:a survey. Ad Hoc Netw. 9(7), 1238–1255 (2011)

    Google Scholar 

  • Heidali, E., Movaghar, A.: An efficient method based on genetic algorithms to solve sensor network optimization problem. Int. J. Appl. Graph Theory Wirel. Ad Hoc Netw. Sens. Netw. 3(1), 18–33 (2011)

    Google Scholar 

  • Hörster, E., Lienhart, R.: Approximating optimal visual sensor placement. In: IEEE International Conference on Multimedia and Expo, pp. 1257–1260 (2006a)

  • Hörster, E., Lienhart, R.: On the optimal placement of multiple visual sensors. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, pp. 111–120 (2006b)

  • Hughes, J.F., Dam, A.V., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley, K.: Computer Graphics: Principles and Practice, 3rd edn. Addison Wesley, Boston (2013)

    Google Scholar 

  • Indu, S., Chaudhury, S.: Optimal sensor placement for surveillance of large spaces. In: Proceedings of the Third International Conference on Distributed Smart Cameras, pp. 1–8 (2009)

  • Iwan, M., Akmeliawati, R., Faisal, T., Al-Assadi, H.M.: Performance comparison of differential evolution and particle swarm optimization in constrained optimization. Procedia Eng. 41, 1323–1328 (2012)

    Google Scholar 

  • Jesus, T.C., Costa, D.G., Portugal, P.: On the computing of area coverage by visual sensor networks: assessing performance of approximate and precise algorithms. In: IEEE 16th International Conference on Industrial Informatics (INDIN), pp. 193–198 (2018)

  • Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manag. Syst. 11(3), 215–223 (2012)

    Google Scholar 

  • Kang, Z., Medioni, G.: Progressive 3D model acquisition with a commodity hand-held camera. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 270–277 (2015)

  • Konar, M., Aytekin, B.: Performance comparison of particle swarm optimization, differential evolution and artificial bee colony algorithms for fuzzy modelling of nonlinear systems. Elektronika ir Elektrotechnika 22(5), 8–13 (2016)

    Google Scholar 

  • Konda, K.R., Conci, M.: Global and local coverage maximization in multi-camera networks by stochastic optimization. Infocommun. J. 5(1), 1–8 (2013)

    Google Scholar 

  • Kulkarni, R.V., Venayagamoorthy, G.K.: Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(2), 262–267 (2011a)

    Google Scholar 

  • Kulkarni, R.V., Venayagamoorthy, G.K.: Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(2), 262–267 (2011b)

    Google Scholar 

  • Liu, J., Sridharan, S., Fookes, C., Wark, T.: Optimal camera planning under versatile user constraints in multi-camera image processing systems. IEEE Trans. Image Process. 23(1), 171–184 (2014)

    MathSciNet  MATH  Google Scholar 

  • Loscrí, V., Natalizio, E., Guerriero, F., Aloi, G.: Particle swarm optimization schemes based on consensus for wireless sensor networks. In: Proceedings of the 7th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, pp. 77–84 (2012)

  • Malik, R., Bajcsy, P.: Automated placement of multiple stereo cameras. In: Proceedings of 8th ECCV Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras, pp. 1–14 (2008)

  • Mavrinac, A.: Modeling and optimizing the coverage of multi-camera system. Ph.D. Dissertation of University of Windsor (2012)

  • Mavrinac, A., Chen, X.: Modeling coverage in camera networks: a survey. Int. J. Comput. Vis. 101(1), 205–226 (2013)

    MathSciNet  Google Scholar 

  • Mavrinac, A., Chen, X., Alarcon-Herrera, J.L.: Semiautomatic model-based view planning for active triangulation 3-D inspection systems. IEEE/ASME Trans. Mechatron. 20(2), 799–811 (2014)

    Google Scholar 

  • Miller, A., White, B., Charbonneau, E., Kanzler, Z., Laviola, J.J.: Interactive 3D model acquisition and tracking of building block structures. IEEE Trans. Vis. Comput. Graph. 18(4), 651–659 (2012)

    Google Scholar 

  • Morsly, Y., Aouf, N., Djouadi, M.S., Richardson, M.: Particle swarm optimization inspired probability algorithm for optimal camera network placement. IEEE Sens. J. 12(5), 1402–1412 (2012)

    Google Scholar 

  • Mulligan, R., Ammari, H.M.: Coverage in wireless sensor networks: a survey. Netw. Protoc. Algorithms 2(2), 27–53 (2010)

    Google Scholar 

  • Munishwar, V.P., Abu-Ghazaleh, N.B.: Coverage algorithms for visual sensor networks. ACM Trans. Sens. Netw. 9(4), 1–34 (2013)

    Google Scholar 

  • Navin, A.H.: Distributed genetic algorithm to solve coverage problem in wireless camera-based sensor networks. Res. J. Resent Sci. 4(12), 106–109 (2015)

    Google Scholar 

  • Park, J., Bhat, P.C., Kak, A.C.: A look-up table based approach for solving the camera selection problem in large camera networks. In: Proceedings of International Workshop on Distributed Smart Cameras, pp. 72–76 (2006)

  • Ready, K.K., conci, N.: Camera positioning for global and local coverage optimization. In: ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–6 (2012)

  • Seok, J., Lee, J., Oh, C., Lee, J., Lee, H.J.: RFID sensor deployment using differential evolution for indoor mobile robot localization. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, pp. 3719–3724 (2010)

  • Shi, Q., Xi, N., Sheng, W.: Recursive measurement process for improving accuracy of dimensional inspection of automotive body parts. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4764–4769 (2007)

  • Singh, V.K., Atrey, P.K., Kankanhalli, M.S.: Coopetitive multi-camera surveillance using model predictive control. Mach. Vis. Appl. 19(5), 375–393 (2008)

    Google Scholar 

  • Soltani, H.R., Haghighat, A.T., Rashidi, H., Chegini, T.G.: A couple of algorithms for k-coverage problem in visual sensor networks. In: Proceedings of International Conference on Communication Engineering and Networks, pp. 96–101 (2011)

  • Soro, S., Heinzelman, W.B.: On the coverage problem in video-based wireless sensor networks. In: Proceedings of 2nd Internatianal Conference on Broadband Networks, pp. 9–16 (2005)

  • Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimedia 2009, 640386 (2009). https://doi.org/10.1155/2009/640386

    Article  Google Scholar 

  • Taj, M., Cavallaro, A.: Distributed and decentralized multicamera tracking. IEEE Signal Process Mag. 28(3), 46–58 (2011)

    Google Scholar 

  • Tarabanis, K., Allen, P., Tsai, R.: A survey of sensor planning in computer vision. IEEE Trans. Robot. Autom. 11(1), 86–104 (1995)

    Google Scholar 

  • Topcuoglu, H. R., Ermis, M., Sifyan, M.: Hybrid evolutionary algorithms for sensor placement on a 3D terrian. In: Proceedings of 9th International Conference on Intelligent Systems Design and Application, pp. 511–516 (2009)

  • Ugolotti, R., Nashed, Y., Mesejo, P., Špela Ivekovič, L., Mussi, S., Cagnoni, : Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13(6), 3092–3105 (2013)

    Google Scholar 

  • Ülker, E., Haydar, A.: Comparison of the performances of differential evolution, particle swarm optimization and harmony search algorithms on benchmark functions. Acad. Res. Int. 3(2), 85–92 (2012)

    Google Scholar 

  • Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, pp. 973–1027 (2000). https://doi.org/10.1016/b978-044482537-7/50023-1

    Google Scholar 

  • Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recogn. Lett. 34(1), 3–19 (2013)

    Google Scholar 

  • Wang, C., Qi, F., Shi, G.: Nodes placement for optimizing coverage of visual sensor networks. Adv. Multimed. Inf. Process. PCM 2009, 1144–1149 (2009)

    Google Scholar 

  • Xu, J., Xi, N., Zhang, C., Shi, Q., Gregory, J.: Real-time 3D shape inspection system of automotive parts based on structured light pattern. Opt. Laser Technol. 43(1), 1–8 (2011a)

    Google Scholar 

  • Xu, Y.C., Lei, B., Hendriks, E.A.: Camera network coverage improving by particle swarm optimization. J. Image Video Process. 3, 1–10 (2011b)

    Google Scholar 

  • Yen, H.H.: Efficient visual sensor coverage algorithm in wireless visual sensor networks. In: Proceedings of IEEE International Wireless Communications and Mobile Computing Conference, pp. 1516–1521 (2013)

  • Yen, H. H.: Novel visual sensor deployment algorithm in PTZ wireless visual sensor networks. In: Proceedings of IEEE Asia Pacific Conference on Wireless and Mobile, pp. 214–218 (2014)

  • Yoon, Y., Kim, Y.H.: An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Trans. Cybern. 43(5), 1473–1483 (2013)

    Google Scholar 

  • Zhang, X., Alarcon-Herrera, J. L., Chen, X.: Optimization for 3-D model-based multi-camera deployment. In: Proceedings of International Federation of Automatic Control, pp. 10126–10131 (2014)

    Google Scholar 

  • Zhang, X., Alarcon-Herrera, J.L., Chen, X.: Coverage enhancement for deployment of multi-camera networks. In: Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, pp. 909–914 (2015a)

  • Zhang, X., Chen, X., Alarcon-Herrera, J.L., Fang, Y.: 3-D model-based multi-camera deployment: a recursive convex optimization approach. IEEE/ASME Trans. Mechatron. 20(6), 3157–3169 (2015b)

    Google Scholar 

  • Zhang, B., Zhang, X., Chen, X., Fang, Y.: A differential evolution approach for coverage optimization of visual sensor networks with parallel occlusion detection. In IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, pp. 1246–1251 (2016a)

  • Zhang, X., Zhang, Y., Zhang, Q., Lee, V.C.S., Li, M.: Problem specific MOEA/D for barrier coverage with wireless sensors. IEEE Trans. Cybern. 47, 1–12 (2016b). (online published)

    Google Scholar 

  • Zhao, J., Cheung, S.S.: Optimal visual sensor planning. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 165–168 (2009)

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (NSFC) under Grant 61573195 and U1613210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, B., Chen, X. et al. Coverage optimization of visual sensor networks for observing 3-D objects: survey and comparison. Int J Intell Robot Appl 3, 342–361 (2019). https://doi.org/10.1007/s41315-019-00102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-019-00102-6

Keywords

Navigation