Skip to main content
Log in

A new reactor concept for the combined production of ammonia and methyl ethyl ketone

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

In this study, simultaneous production of ammonia and methyl ethyl ketone (MEK) in a multi tubular thermally coupled reactor is presented. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol and the produced hydrogen is used to supply 30.72% of the required hydrogen for the ammonia synthesis. Furthermore, in spite of the conventional ammonia synthesis and 2-butanol dehydrogenation plants, interstage coolers and furnace are not required for the proposed configuration. Therefore, operational costs, energy consumption and furnace emissions like CO, CO2 and NOx are significantly decreased. It should be also stressed that the multi-objective optimization is employed to enhance the performance of the reactor with the aid of maximizing the summation of the production rate and yield for each side of the reactor. Besides, the effect of the main process parameters variation on the reactor performance has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a i :

Activity of component i

\( {A}_c^{Exo} \) :

Cross-section area of inner tube, m2

\( {A}_c^{Endo} \) :

Cross-section area of outer tube, m2

A i :

Inside area of inner tube, m2

A o :

Outside area of inner tube, m2

\( {C}_{P_{N_2}} \),\( {C}_{P_{H_2}} \),\( {C}_{P_{NH_3}} \) :

Specific heat capacity of nitrogen, hydrogen and ammonia, kJ kmol−1 K−1

\( {C}_{P_j}^0 \) :

Heat capacity of component j in endothermic side, J kmol−1 K−1

C P :

Specific heat of the gas at constant pressure, J mol−1

\( {C}_{P_{mix}}^{Endo} \) :

Specific heat of gas mixture in endothermic side, kJ kmol−1 K−1

\( {C}_{P_{mix}}^{Exo} \) :

Specific heat of gas mixture in exothermic side, kJ kmol−1 K−1

C :

Rate constant

d p :

Particle diameter, m

D o :

Tube outside diameter, m

D i :

Tube inside diameter, m

f i :

Fugacity of component i, atm

F i :

Molar flow rate of component i in exothermic side, kmol hr.−1

F j :

Molar flow rate of component j in endothermic side, kmol hr.−1

Fi i :

Fugacity coefficient of component i

h :

Heat transfer coefficient between fluid phase and reactor wall, W m−2 K−1

ΔH Exo :

Heat of reaction in exothermic side, kJ kmol−1

ΔH Endo :

Heat of reaction in endothermic side, kJ kmol−1

K a :

Equilibrium constant of reaction

K A :

Adsorption equilibrium constant for 2-butanol

K :

Chemical equilibrium constant

K AK :

Rate constant

K w :

Thermal conductivity of reactor wall, W m−1 K−1

K f :

Fluid thermal conductivity, W m−1 K−1

L :

Reactor length, m

m :

Number of components in endothermic side

m Exo :

Mass flow rate of the feed in exothermic side, kg hr.−1

m Endo :

Mass flow rate of the feed in endothermic side, kg hr.−1

M Exo :

Mean molecular weight in the flow in exothermic side, kg kmol−1

M Endo :

Mean molecular weight in the flow in endothermic side, kg kmol−1

n :

Number of components in exothermic side

P :

Total pressure, atm

\( {P}_{A_i} \) :

Partial pressure of 2-butanol at interface, atm

\( {P}_{K_i} \) :

Partial pressure of MEK at interface, atm

\( {P}_{H_i} \) :

Partial pressure of hydrogen at interface, atm

R A :

2-butanol dehydrogenation reaction rate, lbmol ft.−2 h−1

\( {R}_{NH_3} \) :

Ammonia synthesis reaction rate, kmol m−3 h−1

R g :

Gas constant, J mol−1 K−1

r i :

Inside tube radius, m

T Exo :

Temperature of exothermic reaction side, K

T Endo :

Temperature of endothermic reaction side, K

u Exo :

Axial velocity in exothermic side, m s−1

u Endo :

Axial velocity in endothermic side, m s−1

u g :

Velocity of gas phase, m s−1

U :

Overall heat transfer coefficient, W m−2 K−1

X :

Conversion of nitrogen

y i :

Mole fraction of component i

Z :

Axial reactor coordinate, m

Exo, Endo :

Exothermic and endothermic reaction sides

i :

Numerator for component in exothermic side

j :

Numerator for component in endothermic side

μ :

Fluid viscosity, pa sec

ρ:

Density, kg m−3

φ s :

Sphericity

η :

Effectiveness factor

ν i :

Stoichiometric coefficient of component i in exothermic side

ν j :

Stoichiometric coefficient of component j in endothermic side

References

  1. Ammonia AM (2006) Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Carvalho EP, Borges C, Andrade D, Yuan JY, Ravagnani MA (2014) Modeling and optimization of an ammonia reactor using a penalty-like method. Appl Math Comput 237:330–339

    Google Scholar 

  3. Peng P, Cheng Y, Hatzenbeller R, Addy M, Zhou N, Schiappacasse C et al (2017) Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. Int J Hydrog Energy 42(30):19056–19066

    Article  CAS  Google Scholar 

  4. Shimoda N, Kimura Y, Kobayashi Y, Kubota J, Satokawa S (2017) Ammonia synthesis over yttrium-doped barium zirconate and cerate-based perovskite-type oxide supported ruthenium catalysts. Int J Hydrog Energy 42(50):29745–29755

    Article  CAS  Google Scholar 

  5. Nikačević N, Jovanović M, Petkovska M (2011) Enhanced ammonia synthesis in multifunctional reactor with in situ adsorption. Chem Eng Res Des 89(4):398–404

    Article  CAS  Google Scholar 

  6. Humphreys J, Lan R, Du D, Xu W, Tao S (2018) Promotion effect of proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Int J Hydrog Energy 43(37):17726–17736

    Article  CAS  Google Scholar 

  7. Aziz M, Putranto A, Biddinika MK, Wijayanta AT (2017) Energy-saving combination of N2 production, NH3 synthesis, and power generation. Int J Hydrog Energy 42(44):27174–27183

    Article  CAS  Google Scholar 

  8. Azarhoosh MJ, Farivar F, Ale EH (2014) Simulation and optimization of a horizontal ammonia synthesis reactor using genetic algorithm. RSC Adv 4(26):13419–13429

    Article  CAS  Google Scholar 

  9. Kolios G, Frauhammer J, Eigenberger G (2000) Autothermal fixed-bed reactor concepts. Chem Eng Sci 55(24):5945–5967

    Article  CAS  Google Scholar 

  10. Babu BV, Angira R (2005) Optimal design of an auto-thermal ammonia synthesis reactor. Comput Chem Eng 29(5):1041–1045

    Article  CAS  Google Scholar 

  11. Neier W, Strehlke G (2002) 2-Butanone. Ullmann's encyclopedia of industrial chemistry. 6 ed: Wiley

  12. Bai G, Wang Y, Li F, Zhao Z, Chen G, Li N et al (2013) Influence of acid–base properties of the support on copper-based catalysts for catalytic dehydrogenation of 2-butanol. Catal Lett 143(1):101–107

    Article  CAS  Google Scholar 

  13. Fang D, Ren W, Liu Z, Xu X, Xu L, Lü H et al (2009) Synthesis and applications of mesoporous cu-Zn-Al2O3 catalyst for dehydrogenation of 2-butanol. J Nat Gas Chem 18(2):179–182

    Article  CAS  Google Scholar 

  14. Yang J, Zeng T, Cai D, Li L, Tang W, Hong R et al (2016) Supported ionic liquids as green catalyst for 2-butanol synthesis from transesterification of sec-butyl acetate. Asia Pac J Chem Eng 11(6):901–909

    Article  CAS  Google Scholar 

  15. Liu Z, Huo W, Ma H, Qiao K (2006) Development and commercial application of methyl-ethyl-ketone production technology. Chin J Chem Eng 14(5):676–684

    Article  CAS  Google Scholar 

  16. Keuler JN, Lorenzen L (2002) The dehydrogenation of 2-butanol in a Pd–ag membrane reactor. J Membr Sci 202(1–2):17–26

    Article  CAS  Google Scholar 

  17. Ravi S, Raghunathan T (1988) Dehydrogenation of butan-2-ol on zinc oxide catalyst: a continuous stirred tank reactor study. Ind Eng Chem Res 27(11):2050–2055

    Article  CAS  Google Scholar 

  18. Keuler J, Lorenzen L, Miachon S (2001) The dehydrogenation of 2-butanol over copper-based catalysts: optimising catalyst composition and determining kinetic parameters. Appl Catal A Gen 218(1–2):171–180

    Article  CAS  Google Scholar 

  19. Wang Z, Ma H, Zhu W, Wang G (2002) Characterization of cu-ZnO-Cr2O3/SiO2 catalysts and application to dehydrogenation of 2-butanol to 2-butanone. React Kinet Catal Lett 76(2):271–279

    Article  CAS  Google Scholar 

  20. Geravand E, Shariatinia Z, Yaripour F, Sahebdelfar S (2015) Copper-based nanocatalysts for 2-butanol dehydrogenation: screening and optimization of preparation parameters by response surface methodology. Korean J Chem Eng 32(12):2418–2428

    Article  CAS  Google Scholar 

  21. Chen J, Yan L, Song W, Xu D (2017) Methane steam reforming thermally coupled with catalytic combustion in catalytic microreactors for hydrogen production. Int J Hydrog Energy 42(1):664–680

    Article  CAS  Google Scholar 

  22. Nimkar SC, Mewada RK, Rosen MA (2017) Exergy and exergoeconomic analyses of thermally coupled reactors for methanol synthesis. Int J Hydrog Energy 42(47):28113–28127

    Article  CAS  Google Scholar 

  23. Karimi M, Rahimpour MR, Rafiei R, Shariati A, Iranshahi D (2016) Improving thermal efficiency and increasing production rate in the double moving beds thermally coupled reactors by using differential evolution (DE) technique. Appl Therm Eng 94:543–558

    Article  CAS  Google Scholar 

  24. Iranshahi D, Saeedi R, Azizi K, Nategh M (2017) A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene. Appl Therm Eng 112:1040–1056

    Article  CAS  Google Scholar 

  25. Izurieta EM, Borio DO, Pedernera MN, López E (2017) Parallel plates reactor simulation: ethanol steam reforming thermally coupled with ethanol combustion. Int J Hydrog Energy 42(30):18794–18804

    Article  CAS  Google Scholar 

  26. Chen J, Yan L, Song W, Xu D (2018) Comparisons between methane and methanol steam reforming in thermally integrated microchannel reactors for hydrogen production: a computational fluid dynamics study. Int J Hydrog Energy 43(31):14710–14728

    Article  CAS  Google Scholar 

  27. Wiranarongkorn K, Authayanun S, Assabumrungrat S, Arpornwichanop A (2016) Analysis of thermally coupling steam and tri-reforming processes for the production of hydrogen from bio-oil. Int J Hydrog Energy 41(41):18370–18379

    Article  CAS  Google Scholar 

  28. Patel KS, Sunol AK (2007) Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor. Int J Hydrog Energy 32(13):2344–2358

    Article  CAS  Google Scholar 

  29. Ramaswamy R, Ramachandran P, Duduković M (2008) Coupling exothermic and endothermic reactions in adiabatic reactors. Chem Eng Sci 63(6):1654–1667

    Article  CAS  Google Scholar 

  30. Saeedi R, Iranshahi D (2017) Multi-objective optimization of thermally coupled reactor of CCR naphtha reforming in presence of SO2 oxidation to boost the gasoline octane number and hydrogen. Fuel 206:580–592

    Article  CAS  Google Scholar 

  31. Elnashaie SS, Abashar ME, Al-Ubaid AS (1988) Simulation and optimization of an industrial ammonia reactor. Ind Eng Chem Res 27(11):2015–2022

    Article  CAS  Google Scholar 

  32. Ludwig EE (2011) Applied process design for chemical and petrochemical plants. 4 ed: Elsevier Science

  33. Perona JJ, Thodos G (1957) Reaction kinetic studies: catalytic dehydrogenation of sec-butyl alcohol to methyl ethyl ketone. AICHE J 3(2):230–235

    Article  CAS  Google Scholar 

  34. Dyson D, Simon J (1968) Kinetic expression with diffusion correction for ammonia synthesis on industrial catalyst. Ind Eng Chem Fundam 7(4):605–610

    Article  CAS  Google Scholar 

  35. Rase HF (1977) Chemical reactor design for process plants: case studies and design data. Wiley, New York

    Google Scholar 

  36. Olsson H (2013) Advanced process integration aspects of tubular reactors: Department of Energy and Environment. Chalmers University of Technology

  37. Fogler HS (2006) Elements of chemical reaction engineering. 4 ed: Prentice Hall PTR

  38. Green DW, Perry RH (2007) Perry's chemical Engineers' handbook. Eighth Edition, McGraw-Hill Education

    Google Scholar 

  39. Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind Eng Chem 41(6):1179–1184

    Article  CAS  Google Scholar 

  40. Holman JP (2009) Heat transfer. 10 ed: McGraw-Hill Education

  41. Wen D, Ding Y (2006) Heat transfer of gas flow through a packed bed. Chem Eng Sci 61(11):3532–3542

    Article  CAS  Google Scholar 

  42. Shah M (1967) Control simulation in ammonia production. Ind Eng Chem 59(1):72–83

    Article  CAS  Google Scholar 

  43. Gaines LD (1977) Optimal temperatures for ammonia synthesis converters. Ind Eng Chem Process Des Dev 16(3):381–389

    Article  CAS  Google Scholar 

  44. Amirabadi S, Kabiri S, Vakili R, Iranshahi D, Rahimpour MR (2013) Differential evolution strategy for optimization of hydrogen production via coupling of methylcyclohexane dehydrogenation reaction and methanol synthesis process in a thermally coupled double membrane reactor. Ind Eng Chem Res 52(4):1508–1522

    Article  CAS  Google Scholar 

  45. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Article  Google Scholar 

  46. Deckwer W-D, Field RW (1992) Bubble column reactors, vol 200. Wiley, New York

    Google Scholar 

  47. Cybulski A, Moulijn JA (2005) Structured catalysts and reactors2nd edn. CRC press, Boca Raton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Iranshahi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, R., Iranshahi, D. A new reactor concept for the combined production of ammonia and methyl ethyl ketone. J Flow Chem 9, 43–57 (2019). https://doi.org/10.1007/s41981-018-00029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-00029-2

Keywords

Navigation