Skip to main content
Log in

Acceleration of Transition to Stationary Mode for Solutions to a System of Viscous Gas Dynamics

  • Published:
Moscow University Mathematics Bulletin Aims and scope

Abstract

Explicit formulas for the initial data stabilization algorithm for the stationary solution are obtained by zero approximation method for the semi-implicit difference scheme approximating a system of equations for the dynamics of a one-dimensional viscous barotropic gas. The spectrum of the corresponding linearized system on the stationary solution is studied and theoretical convergence estimates are obtained. Numerical experiments for the nonlinear problem are carried out to confirm the efficiency of the method and to reflect the dependence of the stabilization rate on the parameters of the original problem and the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Zhukov, A. A. Kornev, and A. V. Popov, “Acceleration of the Process of Entering Stationary Mode for Solutions of a Linearized System of Viscous Gas Dynamics. I, II,” Vestn. Mosk. Univ., Matem. Mekhan., No. 1, 26 (2018); No. 3, 3 (2018).

    MATH  Google Scholar 

  2. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Issues of Numerical Solution of Hyperbolic Systems of Equations (Nauka, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  3. V. I. Lebedev, “Difference Analogies of Orthogonal Decompositions, Basic Differential Operators, and Some Boundary Value Problems of Mathematical Physics I, II,” Zh. Vychisl. Matem. Matem. Fiz. 3 (4), 449 (1964); 4 (4), 649 (1964).

    Google Scholar 

  4. F. B. Imranov, G. M. Kobelkov, and A. G. Sokolov, “Finite Difference Scheme for Barotropic Gas Equations,” Doklady Rus. Akad. Nauk 478 (4), 388 (2018) [Doklady Math. 97 (1), 58 (2018)].

    Google Scholar 

  5. A. V. Zvyagin, G. M. Kobelkov, and M. A. Lozhnikov, “On Some Finite Difference Scheme for Gas Dynamics Equations,” Vestn. Mosk. Univ., Matem. Mekhan., No. 4, 15 (2018).

    Google Scholar 

  6. E. V. Chizhonkov, “Numerical Aspects of One Stabilization Method,” Russ. J. Numer. Anal. Math. Modelling 18 (5), 363 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Samarskii and E. S. Nikolaev, Solution Methods for Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  8. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (BINOM, Moscow, 2012) [in Russian].

    MATH  Google Scholar 

  9. S. V. Milyutin and E. V. Chizhonkov, “Two Methods of Approximate Projection onto Stable Manifold,” Vychisl. Metody Programm. 8, 177 (2007).

    Google Scholar 

  10. E. V. Chizhonkov, “Projection Operators for Numerical Stabilization,” Vychisl. Metody Programm. 5, 161 (2004).

    Google Scholar 

  11. A. V. Fursikov, “Stabilizability of a Quasi-Linear Parabolic Equation by Means of a Boundary Control with Feedback,” Matem. Sborn. 192 (4), 115 (2001) [Sbornik: Math. 192 (4), 593 (2001)].

    MATH  Google Scholar 

  12. A. A. Kornev, “Classification of Methods of Approximate Projecting onto Stable Manifold,” Doklady Rus. Akad. Nauk 400 (6), 736 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Zhukov, A. A. Kornev, M. A. Lozhnikov or A. V. Popov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, K.A., Kornev, A.A., Lozhnikov, M.A. et al. Acceleration of Transition to Stationary Mode for Solutions to a System of Viscous Gas Dynamics. Moscow Univ. Math. Bull. 74, 55–61 (2019). https://doi.org/10.3103/S0027132219020037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132219020037

Navigation