Skip to main content

Advertisement

Log in

An experimental system for real-time fluorescence recordings of cell membrane changes induced by electroporation

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The electroporation of cells is nowadays used for a large variety of purposes, from basic research to cancer therapy and food processing. Understanding molecular mechanisms of the main processes involved in electroporation is thus of significant interest. In the present work, we propose an experimental system to record in real time the evolution of any cell parameter which can be evaluated by fluorescence (before, during and after application of the electroporation pulses to cells in suspension). The system is based on the design of adequate electroporation electrodes, compatible with a standard spectrofluorometer cuvette housing. The electric field intensity generated when pulses are applied was carefully characterized for different geometries of the electrodes, to choose a construction ensuring the greatest homogeneity of the field in combination with the best possible illumination of the sample. As an example of the method’s application, we present here generalized polarization kinetics for a varying number of electroporation pulses applied to a cell suspension; the general polarization parameter is strongly correlated to water presence in the hydrophobic membrane core. The system may be used for many other fluorescence measurements useful for the characterization of the electroporation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argus F, Boyd B, Becker SM (2017) Electroporation of tissue and cells: a three-equation model of drug delivery. Comput Biol Med 84:226–234

    Article  CAS  Google Scholar 

  • Bagatolli L (2012) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope, fluorescent methods to study biological membranes. Springer, Berlin, pp 3–35

    Google Scholar 

  • Escoffre JM, Bellard E, Faurie C, Sebai SC, Golzio M, Teissie J, Rols MP (1838) Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells. Biochim Et Biophys Acta Biomembr 2014:1701–1709

    Google Scholar 

  • Franklin S, Ibey BL, Nash K, Beier HT (2013) Measurement of changes in plasma membrane phospholipid polarization following nanosecond pulsed electric field exposure. In: Wilmink GJ, Ibey BL (eds) Proceedings of SPIE. Terahertz and ultrashort electromagnetic pulses for biomedical applications, vol 8585, pp 85850S1–S7. https://doi.org/10.1117/12.2005091

  • Fritz S, Sommer CM, Vollherbst D, Wachter MF, Longerich T, Sachsenmeier M, Knapp J, Radeleff BA, Werner J (2015) Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model. Pancreas 44:791–798

    Article  Google Scholar 

  • Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B (2013) Cell membrane electroporation-part 2: the applications. IEEE Electr Insul Mag 29:29–37

    Article  Google Scholar 

  • Kandušer M, Šentjurc M, Miklavčič D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35:196–204

    Article  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M (2012) Cell membrane electroporation-part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  • Kotnik T, Rems L, Tarek M, Miklavčič D (2019) Membrane electroporation and electropermeabilization: mechanisms and models. Ann Rev Biophys 48:63–91

    Article  CAS  Google Scholar 

  • Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, Pavlovic I, Paulin-Kosir SM, Cemazar M, Morsli N, Soden DM, Rudolf Z, Robert C, O’Sullivan GC, Mir LM (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer 4:3–13

    Article  CAS  Google Scholar 

  • Mir LM (2006) Bases and rationale of the electrochemotherapy. Ejc Suppl 4:38–44

    Article  Google Scholar 

  • Neumann E (1988) The electroporation hysteresis. Ferroelectrics 86:325–333

    Article  CAS  Google Scholar 

  • Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  CAS  Google Scholar 

  • Orlowski S, Belehradek J, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture—increase of the cyto-toxycity of anticancer drugs. Biochem Pharmacol 37:4727–4733

    Article  CAS  Google Scholar 

  • Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence. J Fluoresc 2:167–174

    Article  CAS  Google Scholar 

  • Parasassi T, De Stasio G, Dubaldo A, Gratton E (1990) Phase fluctuation in phospholipid-membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  CAS  Google Scholar 

  • Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid-vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189

    Article  CAS  Google Scholar 

  • Parasassi T, Krasnowska E, Iorio E, Gratton E (1996) PRODAN and LAURDAN partition between the lipid phases and water. Biophys J 70:458

    Article  Google Scholar 

  • Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–373

    Article  CAS  Google Scholar 

  • Pichi B, Pellini R, De Virgilio A, Spriano G (2018) Electrochemotherapy: a well-accepted palliative treatment by patients with head and neck tumours. Acta Otorhinolaryngol Ital 38:181–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter H (2003) Transfection by electroporation. Curr Protoc Mol Biol 121:9

    Google Scholar 

  • Pucihar G, Kotnik T, Kanduser M, Miklavcic D (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115

    Article  CAS  Google Scholar 

  • Rems L, Viano M, Kasimova MA, Miklavcic D, Tarek M (2019) The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry 125:46–57

    Article  CAS  Google Scholar 

  • S.J.E. Rombouts, M.W. Nijkamp, W.P.M. van Dijck, L.A.A. Brosens, M. Konings, R. van Hillegersberg, I. Rinkes, J. Hagendoom, F.H. Wittkamp, I.Q. Molenaar, Irreversible Electroporation of the Pancreas Using Parallel Plate Electrodes in a Porcine Model: A Feasibility Study, Plos One, 12 (2017).

  • S. A. Sanchez, A. Tricerri, G. Gunther, E. Gratton, Laurdan Generalized Polarization: from cuvette to microscope, 2007.

  • Saulis G (1997) Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J 73:1299–1309

    Article  CAS  Google Scholar 

  • Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. J Electroanal Chem Interfacial Electrochem 321:1–13

    Article  Google Scholar 

  • K. Scheinpflug, O. Krylova, H. Strahl, Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy, Methods in molecular biology (Clifton, N.J.), 1520 (2017) 159–174.

  • K. Sugimoto, F. Moriyasu, H. Takeuchi, M. Ando, T. Sano, T. Mori, Y. Furuichi, Y. Kobayashi, I. Nakamura, Case study to assess the safety of irreversible electroporation near the heart, Springerplus, 4 (2015).

  • Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, Asirvatham S (2018) Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther 16:349–360

    Article  CAS  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  Google Scholar 

  • Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Article  CAS  Google Scholar 

  • Weaver JC (1994) Molecular basis for cell membrane electroporationa. Ann N Y Acad Sci 720:141–152

    Article  CAS  Google Scholar 

  • Wichtowski M, Murawa D (2018) Electrochemotherapy in the treatment of melanoma. Contemp Oncol (Pozn) 22:8–13

    CAS  Google Scholar 

  • Wojtaszczyk A, Caluori G, Pesl M, Melajova K, Starek Z (2018) Irreversible electroporation ablation for atrial fibrillation. J Cardiovasc Electrophysiol 29:643–651

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly supported by Grant of Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0062/contract no.58/component projects no. 1 and 2, within PNCDI III. We thank Luminita C. Miclea and Christien Oktaviani Matei for valuable help in preparation of cultured cells. We also thank Iulia Tivig for helpful assistance in graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Savopol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tivig, I., Savopol, T., Kovacs, E. et al. An experimental system for real-time fluorescence recordings of cell membrane changes induced by electroporation. Eur Biophys J 49, 105–111 (2020). https://doi.org/10.1007/s00249-019-01417-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01417-9

Keywords

Navigation