Skip to main content

Advertisement

Log in

Mercury emissions in China: a general review

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

This paper provides a general review of the research status of mercury emissions in China. Global surveys rank Asia as the region with the largest share of global mercury emissions, accounting for almost half. China contributes about one-third of the world’s mercury emissions, which is 600–800 t per year. And thus, it plays a vital role in reducing global mercury emissions. Data since 2003 has been surveyed. Mercury emissions in China have risen in the beginning and then declined. There are differences in the composition of mercury emissions sources between China and the world, in which coal combustion and non-ferrous metals smelting contribute more than 50% of the emissions in China. Although mercury emission standards in China are close to those of the European Union and the United States, annual mercury emissions in China are four times higher than those of the United States. Mercury emissions in China are concentrated in the central and eastern regions now, but the annual mercury emissions are increasing in the western regions, which may be related to the construction of industrial parks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Lindberg SE, Stratton WJ. Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environ Sci Technol. 1998;32(1):49–57.

    Article  CAS  Google Scholar 

  2. Streets DG, Zhang Q, Wu Y. Projections of global mercury emissions in 2050. Environ Sci Technol. 2009;43(8):2983–8.

    Article  CAS  Google Scholar 

  3. Jonsson S, et al. Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Sci Adv. 2017;3(1):1–9.

    Article  CAS  Google Scholar 

  4. Fu XW, et al. Observations of atmospheric mercury in China: a critical review. Atmos Chem Phys. 2015;15(16):9455–76.

    Article  CAS  Google Scholar 

  5. Lindqvist O, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water Air Soil Pollut. 1991;55(1–2):11–261.

    Google Scholar 

  6. Streets DG, et al. Historical releases of mercury to air, land, and water from coal combustion. Sci Total Environ. 2018;615:131–40.

    Article  CAS  Google Scholar 

  7. Hylander LD. Global mercury pollution and its expected decrease after a mercury trade ban. Water Air Soil Pollut. 2001;125(1–4):331–44.

    Article  CAS  Google Scholar 

  8. Streets DG, et al. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos Environ. 2019;201:417–27.

    Article  CAS  Google Scholar 

  9. Selin H, et al. Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio. 2018;47(2):198–215.

    Article  CAS  Google Scholar 

  10. Hui ML, et al. Mercury flows in china and global drivers. Environ Sci Technol. 2017;51(1):222–31.

    Article  CAS  Google Scholar 

  11. Mukherjee AB, et al. Mercury in waste in the European Union: sources, disposal methods and risks. Resour Conserv Recycl. 2004;42(2):155–82.

    Article  Google Scholar 

  12. Wu QR, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in china during 1978–2014. Environ Sci Technol. 2016;50(24):13428–35.

    Article  CAS  Google Scholar 

  13. Horvat M, et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ. 2003;304(1–3):231–56.

    Article  CAS  Google Scholar 

  14. Streets DG, et al. Total mercury released to the environment by human activities. Environ Sci Technol. 2017;51(11):5969–77.

    Article  CAS  Google Scholar 

  15. Environment UN. Global mercury assessment 2018. Geneva: UNEP; 2018.

    Google Scholar 

  16. Andresen S, Rosendal K, Skjaerseth JB. Why negotiate a legally binding mercury convention? Int Environ Agreem Polit Law Econ. 2013;13(4):425–40.

    Google Scholar 

  17. Ying H, et al. Anthropogenic mercury emissions from 1980 to 2012 in China. Environ Pollut. 2017;226:230–9.

    Article  CAS  Google Scholar 

  18. Hu YA, Cheng HF, Tao S. The growing importance of waste-to-energy (WTE) incineration in China’s anthropogenic mercury emissions: emission inventories and reduction strategies. Renew Sustain Energy Rev. 2018;97:119–37.

    Article  CAS  Google Scholar 

  19. Evers DC, et al. Evaluating the effectiveness of the Minamata Convention on Mercury: principles and recommendations for next steps. Sci Total Environ. 2016;569:888–903.

    Article  CAS  Google Scholar 

  20. Wang ZW, et al. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. J Environ Sci. 2007;19(2):176–80.

    Article  CAS  Google Scholar 

  21. Sprovieri F, et al. A review of worldwide atmospheric mercury measurements. Atmos Chem Phys. 2010;10(17):8245–65.

    Article  CAS  Google Scholar 

  22. Pacyna JM, et al. Mapping 1995 global anthropogenic emissions of mercury. Atmos Environ. 2003;37:S109–17.

    Article  CAS  Google Scholar 

  23. Pacyna JM, et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos Chem Phys. 2016;16(19):12495–511.

    Article  CAS  Google Scholar 

  24. Wang SX, et al. Streets estimate the mercury emissions from non-coal sources in China. Environ Sci. 2006;12(27):2401–6.

    Google Scholar 

  25. Cheng K, et al. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ Sci Technol. 2015;49(2):1206–14.

    Article  CAS  Google Scholar 

  26. Tian HZ, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys. 2015;15(17):10127–47.

    Article  CAS  Google Scholar 

  27. Zhang Y, et al. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020. Sci Total Environ. 2018;610:796–801.

    Article  CAS  Google Scholar 

  28. Zheng LG, Liu GJ, Chou CL. The distribution, occurrence and environmental effect of mercury in Chinese coals. Sci Total Environ. 2007;384(1–3):374–83.

    Article  CAS  Google Scholar 

  29. Wang FY, et al. Mercury mass flow in iron and steel production process and its implications for mercury emission control. J Environ Sci. 2016;43:293–301.

    Article  CAS  Google Scholar 

  30. Wang Y, et al. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos Environ. 2017;152:6–15.

    Article  CAS  Google Scholar 

  31. Song ZC, et al. Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China. J Geochem Explor. 2018;194:81–7.

    Article  CAS  Google Scholar 

  32. Zhang HB, et al. Anthropogenic mercury sequestration in different soil types on the southeast coast of China. J Soils Sediments. 2015;15(4):962–71.

    Article  CAS  Google Scholar 

  33. Sakata M, Natsumi M, Tani Y. Isotopic evidence of boron in precipitation originating from coal burning in Asian continent. Geochem J. 2010;44(2):113–23.

    Article  CAS  Google Scholar 

  34. Tang Y, et al. Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmos Chem Phys. 2018;18(11):8279–91.

    Article  CAS  Google Scholar 

  35. Zhu WZ, et al. Annual time-series analyses of total gaseous mercury measurement and its impact factors on the Gongga mountains in the southeastern fringe of the Qinghai-Tibetan plateau. J Mt Sci. 2008;5(1):17–31.

    Article  Google Scholar 

  36. Liu C, et al. Sources and outflows of atmospheric mercury at Mt. Changbai, northeastern China. Sci Total Environ. 2019;663:275–84.

    Article  CAS  Google Scholar 

  37. Horowitz HM, et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget. Atmos Chem Phys. 2017;17(10):6353–71.

    Article  CAS  Google Scholar 

  38. Zhou H, et al. Atmospheric mercury temporal trends in the northeastern United States from 1992 to 2014: are measured concentrations responding to decreasing regional emissions? Environ Sci Technol Lett. 2017;4(3):91–7.

    Article  CAS  Google Scholar 

  39. Fu XW, et al. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmos Chem Phys. 2016;16(18):11547–62.

    Article  CAS  Google Scholar 

  40. Qie GH, et al. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China. J Environ Manag. 2018;215:195–205.

    Article  CAS  Google Scholar 

  41. Guentzel JL, et al. Processes influencing rainfall deposition of mercury in Florida. Environ Sci Technol. 2001;35(5):863–73.

    Article  CAS  Google Scholar 

  42. Holmes CD, et al. Thunderstorms increase mercury wet deposition. Environ Sci Technol. 2016;50(17):9343–50.

    Article  CAS  Google Scholar 

  43. Cheng HX, et al. Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor. 2014;139:31–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, F. Mercury emissions in China: a general review. Waste Dispos. Sustain. Energy 1, 127–132 (2019). https://doi.org/10.1007/s42768-019-00012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-019-00012-0

Keywords

Navigation