Skip to main content
Log in

Space Weathering Experiments on Spacecraft Materials

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material’s optical signature, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. In situ optical reflectivity measurements are presented before, during and after electron dosing. It is shown that the spectral profile of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bedard, M.D.: Using a physics-based reflection model to study the reddening effect observed in spectrometric measurements of artificial space objects. Paper presented at the advance Maui optical and space surveillance technologies conference, Maui

  2. Aberkromby, K.J., Hamada, K., Guyote, M., Okada, J., Barker, E.: Remote and ground truth spectral measurement comparisons of FORMOSAT III. Paper presented at the advance Maui optical and space surveillance technologies conference, Maui

  3. De Groh KK, Banks BA, Asmar OC, Yi GT, Mitchell GG, Guo A, Sechkar EA. Erosion Results of the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station. NASA Technical Report NASA/TM-2017-219445 (2017);

  4. Pippin HG, Normand E, B. Wolf SL, Kamenetzky R. Analysis of Metallized TeflonTM Thin-Film Materials Performance on Satellites. Journal of Spacecraft and Rockets. 2004 41 (3), 322–5;

  5. Townsend JA, Hansen PA, Dever JA, de Groh KK, Banks BA, Wang L, He C. Hubble Space Telescope metallized Teflon (R) FEP thermal control materials: on-orbit degradation and post-retrieval analysis. High Performance Polymers. 1999, ;11 (1):81–99

  6. Finckenor M. MISSE Thermal Control Materials with Comparison to Previous Flight Experiments. In AIP Conference Proceedings 2009, 1087 (1) 241–248

  7. Engelhart, D.P., Plis, E., Humagain, S., Greenbaum, S., Ferguson, D., Cooper, R., Hoffmann, R.: Chemical and electrical dynamics of polyimide film damaged by Electron radiation. Ieee T Plasma Sci. 45(9), 2573–2577 (2017). https://doi.org/10.1109/tps.2017.2729516

  8. Sun, Y.M., Zhu, Z.Y., Jin, Y.F., Liu, C.L., Wang, Z.G., Liu, J., Hou, M.D., Zhang, Q.X.: The effects of high electronic energy loss on the chemical modification of polyimide. Nucl. Instrum. & Methods Phys. Res. B-Beam Interactions with Materials and Atoms. 193, 214–220 (2002)

    Article  Google Scholar 

  9. Wu, Y., Sun, C., Xiao, J., Li, R., Yang, D., He, S.: A study on the free-radical evolution and its correlation with the optical degradation of 170 keV proton-irradiated polyimide. Polym. Degrad. Stab. 95(7), 1219–1225 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.03.033

    Article  Google Scholar 

  10. Choi, H.S., Lee, J., Cho, K.S., Kwak, Y.S., Cho, I.H., Park, Y.D., Kim, Y.H., Baker, D.N., Reeves, G.D., Lee, D.K.: Analysis of GEO spacecraft anomalies: space weather relationships. Space Weather-the International Journal of Research and Applications. 9, (2011). https://doi.org/10.1029/2010sw000597

  11. Ginet, G., O’Brien, T., Huston, S., Johnston, W., Guild, T., Friedel, R., Lindstrom, C., Roth, C., Whelan, P., Quinn, R.: AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. Space Sci. Rev. 179(1–4), 579–615 (2013)

    Article  Google Scholar 

  12. Mehnert, R.: Materials modification using electron beams. In: Misaelides, P. (ed.) Application of Particle and Laser Beams in Materials Technology, Vol. 283. Nato Advanced Science Institutes Series, Series E, Applied Sciences, pp. 557–580 (1995)

    Google Scholar 

  13. Meng, C., Fang, W., Jing, L., Hai-Bo, Z.: Charging dynamics of a polymer due to electron irradiation: a simultaneous scattering-transport model and preliminary results. Chin. Phys. B. 21(12), 127901 (2012)

    Article  Google Scholar 

  14. Paulmier, T., Dirassen, B., Arnaout, M., Payan, D., Balcon, N.: Electric properties of space used polymers under high energy electron irradiation. In: Solid Dielectrics (ICSD), 2013 IEEE International Conference on 2013, pp. 788–791. IEEE

  15. Engelhart, D.P., Plis, E., Ferguson, D., Cooper, R., Hoffmann, R.: Optical and Chemical Characterization of Polyimide in a GEO-Like Environment. Technical Paper: 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (2016)

  16. Plis, E., Engelhart, D.P., Barton, D., Cooper, R., Ferguson, D., Hoffmann, R.: Degradation of polyimide under exposure to 90keV electrons. Phys. Status Solidi. B-Basic Solid State Phys. 254(7), (2017a). https://doi.org/10.1002/pssb.201600819

  17. Rahnamoun, A; Engelhart, D.P.; Humagain, S; Koerner, H; Plis, E.A.; Kennedy, W.J.; Cooper R; Greenbaum, S.G.; Ryan Hoffmann, R; van Duin, A.T.C. Chemical dynamics characteristics of Kapton polyimide damaged by electron beam irradiation. Polymer. In review.

  18. M. Finckenor, D. Dooling.: Multilayer insulation material guidelines. In: NASA (ed.), vol. TP-1999-209263. vol. TP-1999-209263. TP-1999-209263, (1999)

  19. Rodriguez, H., Aberkromby, M., Mulrooney, K.J., Baker, M.E.: Optical properties of multi-layered insulation. Paper presented at the advanced Maui optical and space surveillance technologies conference, Maui

  20. Schildknecht, T., Musci, R., Ploner, M., Beutler, G., Flury, W., Kuusela, J., de Leon Cruz, J., de Fatima Dominguez Palmero, L.: Optical observations of space debris in GEO and in highly-eccentric orbits. Adv. Space Res. 34(5), 901–911 (2004). https://doi.org/10.1016/j.asr.2003.01.009

    Article  Google Scholar 

  21. Fukugita, M., Ichikawa, T., Gunn, J.E., Doi, M., Shimasaku, K., Schneider, D.P.: The Sloan digital sky survey photometric system. Astron. J. 111(4), 1748–1756 (1996). https://doi.org/10.1086/117915

    Article  Google Scholar 

  22. Ackerman, M., Kiziah, R., Zimmer, P., McGraw, J., Cox, D.: A Systematic Examination of Ground-Based and Space-Based Approaches to Optical Detection and Tracking of Satellites. Paper presented at the 31st Space Symposium, Technical Track, Colorado Springs April 14, 2015

  23. Sheldahl.: The Red 125 Book. (2015). Available: http://www.sheldahl.com/Products/WebPages/RedBook.aspx

  24. Plis, E.A., Engelhart, D.P., Likar, J., Hoffmann, R.C., Cooper, R., Ferguson, D.: Electrical behavior of carbon-loaded Kapton for spacecraft applications. J. Spacecr. Rocket. 55, 1–2 (2017b). https://doi.org/10.2514/1.A33970

    Article  Google Scholar 

  25. Mateo-Velez, J.C., Sicard-Piet, A., Lazaro, D., Inguimbert, V., Sarrailh, P., Hess, S., Maget, V., Payan, D.: Severe geostationary environments: numerical estimation of spacecraft surface Charging from flight data. J. Spacecr. Rocket. 53(2), 304–316 (2016). https://doi.org/10.2514/1.a33376

    Article  Google Scholar 

  26. Khan, A.R., Jiang, W., Toyoda, K.: Electron and proton irradiation effect on bulk resistivity of polyimide measured in vacuum. JPN Soc. Aeronaut. Space Sci. 57, 6p (2013)

  27. Shi, J., Gong, C., Tian, X., Yang, S., Chu, P.K.: Optical properties and chemical structures of Kapton-H film after proton irradiation by immersion in a hydrogen plasma. Appl. Surf. Sci. 258(8), 3829–3834 (2012)

    Article  Google Scholar 

  28. Yue, L., Wu, Y., Sun, C., Shi, Y., Zhang, Y.: Effects of proton pre-irradiation on radiation induced conductivity of polyimide. Radiat. Phys. Chem. 119, 130–135 (2016)

    Article  Google Scholar 

  29. Cooper, R., Hoffmann, R.: Jumbo space environment simulation and spacecraft CHARGING chamber characterization. Air Force Technical Report AFRL-RV-PS-TP-2015-0012 (2015)

  30. Mosteller, R.D.: Bibliography of MCNP Verification & Validation: 1990-2003. In: Laboratory, L.A.N. (ed.) La-Ur-03–9032 (2003)

  31. O'Brien, T.P., Johnston, W.R., Huston, S.L., Roth, C.J., Guild, T.B., Su, Y.J., Quinn, R.A.: Changes in AE9/AP9-IRENE version 1.5. IEEE Trans. Nucl. Sci. 65(1), 462–466 (2018). https://doi.org/10.1109/tns.2017.2771324

    Article  Google Scholar 

  32. Engelhart D. P., Plis E. A., Cooper R., Humagain S., Koch A., Brunetti M., Greenbaum S., Hoffmann R.. Effect of Electron Bombardment on Polyimide 191 Film, Key Engineering Materials, vol. 759, pp. 48–53 (2018)

  33. Plis E. A., Engelhart D. P., Cooper R., Ferguson D. C., Hoffmann R.. Effect of environment on 193 charge transport properties of polyimide films damaged by high-energy electron 194 radiation. Journal of Vacuum Science and Technology B 36 (5) (2018). https://doi.org/10.1116/1.5044184

  34. Acktar Advanced Coatings. https://www.acktar-store.com/store/spectral-black-coated-foil-adhesive-backed-20x30cm-10sheet/ (2017). Accessed June 2017

  35. Farnsworth, H.E.: Electronic bombardment of metal surfaces. Phys. Rev. 25(1), 41–57 (1925)

    Article  Google Scholar 

  36. Yates, J.T.: Experimental Innovations in Surface Science: a Guide to Practical Laboratory Methods and Instruments. Springer (1997)

  37. Cowardin, H., Seitzer, P., Abercromby, K., Barker, E., Schildknecht, T.: Characterization of orbital debris photometric properties derived from Laboratory-based measurements. Paper presented at the advanced Maui optical and space surveillance technologies conference, Maui

  38. Sloan Digital Sky Survey. http://www.sdss.org/dr12/algorithms/ugrizvegasun/. Accessed June 2017

  39. Humagain, S., Johnson, J., Stallworth, P., Engelhart, D., Plis, E., Ferguson, D., Cooper, R., Hoffmann, R., Greenbaum, S.: Study of damage and recovery of Electron irradiated polyimide using EPR and NMR spectroscopy. Bull. Am. Phys. Soc. 62, (2017)

Download references

Acknowledgements

We would like to acknowledge support from the Air Force Office of Scientific Research, Remote Sensing and Imaging Physics Portfolio (Dr. Stacy Williams). Grant 17RVCOR414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hoffmann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelhart, D.P., Cooper, R., Cowardin, H. et al. Space Weathering Experiments on Spacecraft Materials. J Astronaut Sci 66, 210–223 (2019). https://doi.org/10.1007/s40295-019-00175-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00175-2

Keywords

Navigation