Skip to main content
Log in

Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the biomedical research using variety of silica materials has shown an outstanding growth. The silica-based materials are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. The unique and favourable physico-chemical characteristics of mesoporous silica nanoparticles are increasingly attracting the researchers to utilise them into various fields of biomedical research. Apart from the mesoporous silica nanoparticles, a range of other silica-based materials have also been applied quite extensively in the biomedical research. This article presents a brief overview of three particular areas of biomedical applications where a broad range of silica-based materials have been covered: (1) variety of drug delivery including intracellular drug delivery systems using silica-based carriers; (2) applications of silica materials as bone grafts or implants for bone disease treatment and bone regeneration; and (3) development of silica-based contrast agents for magnetic resonance image enhancement. Biocompatibility, bio-toxicity, tissue responses, cellular uptakes, and, how the effects of size, shape, morphology, structural and textural properties of the silica materials impact on their utilities are discussed. Perspectives, insights and critical reflections into a range of aspects are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, A., Zhang, W., Li, X., Tan, D., Han, X., and Bao, X., J. Catal. Lett., 2007, vol. 119, no. 1, p. 159.

    Article  CAS  Google Scholar 

  2. Huang, H., Ji, Y., Qiao, Z., Zhao, C., He, J., and Zhang, H., J. Autom. Methods Manage. Chem., 2010, 323509.

    Google Scholar 

  3. Vittorini, M., Dumitriu, E., Barletta, G., and Secundo, F., Bioprocess Biosyst. Eng. 2011, vol. 34, no. 2, p. 247.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, J.W., Tra, P.T., Kim, S.I., and Roh, S.H., J. Nanosci. Nanotechnol., 2008, vol. 8, no. 10, p. 5152.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, X., Zhu, L., Zhao, T., Lan, J., Yan, W., and Zhang, H., Micropor. Mesopor. Mater. 2011, vol. 142, nos. 2–3, p. 614.

    Article  CAS  Google Scholar 

  6. Kim, T.-W., Kleitz, F., Paul, B., and Ryoo, R., J. Am. Chem. Soc., 2005, vol. 127, no. 20, p. 7601.

    Article  PubMed  CAS  Google Scholar 

  7. Choi, M., Kleitz, F., Liu, D., Lee, H.Y., Ahn, W.-S., and Ryoo, R., J. Am. Chem. Soc., 2005, vol. 127, no. 6, p. 1924.

    Article  PubMed  CAS  Google Scholar 

  8. Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G., J. Chromatogr. A, 2006, vol. 1122, nos. 1–2, p. 13.

    Article  PubMed  CAS  Google Scholar 

  9. Melo, R.A.A., Giotto, M.V., Rocha, J., and Urquieta-González, E.A., Mater. Res. 1999, vol. 2, no. 3, p. 173.

    Article  CAS  Google Scholar 

  10. Wang, C., Lim, S., Du, G., Loebicki, C.Z., Li, N., and Derrouiche, S., J. Phys. Chem. C, 2009, vol. 113, no. 33, p. 14863.

    Article  CAS  Google Scholar 

  11. Walia, S., Acharya, A., and Beilstein, J., Nanotecnology 2015, vol. 6, p. 546.

    CAS  Google Scholar 

  12. Caravan, P., Ellison, J.J., McMurry, T.J., and Lauffer, R.B., Chem. Rev. 1999, vol. 99, no. 9, p. 2293.

    Article  PubMed  CAS  Google Scholar 

  13. Chowdhury, M.A., Curr. Drug Delivery 2016, vol. 13, no. 6, p. 839.

    Article  CAS  Google Scholar 

  14. Chowdhury, M.A., ChemBioEng Rev. 2016, vol. 3, no. 5, p. 229.

    Article  CAS  Google Scholar 

  15. Vallet-Regí, M., Balas, F., and Arcos, D., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 40, p. 7548.

    Article  CAS  Google Scholar 

  16. Vallet-Regí, M., Colilla, M., and González, B., Chem. Soc. Rev. 2011, vol. 40, no. 2, p. 596.

    Article  PubMed  Google Scholar 

  17. Vallet-Regí, M., Ruiz-González, L., Izquierdo-Barba, I., and González-Calbet, J.M., J. Mater. Chem., 2006, vol. 16, no. 1, p. 26.

    Article  Google Scholar 

  18. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., and Liu, J., Nanomed.: Nanotechnol., Biol. Med., 2015, vol. 11, no. 2, p. 313.

    Article  CAS  Google Scholar 

  19. Baeza, A., Colilla, M., and Vallet-Regí, M., Expert Opin. Drug Delivery 2015, vol. 12, no. 2, p. 319.

    Article  CAS  Google Scholar 

  20. Iafisco, M. and Margiotta, N., J. Inorg. Biochem., 2012, vol. 117, p. 237.

    Article  PubMed  CAS  Google Scholar 

  21. Mekaru, H., Lu, J., and Tamanoi, F., Adv. Drug Delivery Rev. 2015, vol. 95, p. 40.

    Article  CAS  Google Scholar 

  22. Pan, D., Caruthers, S.D., Senpan, A., Schmieder, A.H., Wickline, S.A., and Lanza, G.M., Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2011, vol. 3, no. 2, p. 162.

    CAS  Google Scholar 

  23. Song, N. and Yang, Y.-W., Chem. Soc. Rev. 2015, vol. 44, no. 11, p. 3474.

    Article  PubMed  CAS  Google Scholar 

  24. Singh, N., Karambelkar, A., Gu, L., Lin, K., Miller, J.S., and Chen, C.S., J. Am. Chem. Soc., 2011, vol. 133, no. 49, p. 19582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kamaly, N., Miller, A., and Bell, J., Curr. Top. Med. Chem. 2010, vol. 10, no. 12, p. 1158.

    Article  PubMed  CAS  Google Scholar 

  26. Niu, D., Luo, X., Li, Y., Liu, X., Wang, X., and Shi, J., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 20, p. 9942.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, S.D., Khitrin, A.K., Perera, V.S., and Kandanapitiye, M.S., US Patent 20130302256, 2013.

    Google Scholar 

  28. Rowe, M.D., Thamm, D.H., Kraft, S.L., and Boyes, S.G., Biomacromolecules 2009, vol. 10, no. 4, p. 983.

    Article  PubMed  CAS  Google Scholar 

  29. Guari, Y., Larionova, J., Corti, M., Lascialfari, A., Marinone, M., and Poletti, G., Dalton Trans. 2008, vol. 28, p. 3658.

    Article  CAS  Google Scholar 

  30. Huang, S.D., Li, Y., Basilion, J.P., Hao, J., and Flask, C., US Patent 8940275, 2015.

    Google Scholar 

  31. Lopez, T., Ortiz, E., Alexander-Katz, R., Basaldella, E., and Bokhimi, X., Nanomed.: Nanotechnol., Biol. Med., 2009, vol. 5, no. 2, p. 170.

    Article  CAS  Google Scholar 

  32. Carino, I.S., Pasqua, L., Testa, F., Aiello, R., Puoci, F., and Iemma, F., Drug Delivery 2007, vol. 14, no. 8, p. 491.

    Article  PubMed  CAS  Google Scholar 

  33. Zhen, G., Yu, D., Xianbin, L., Siu-Choon, N., Yuan, C., and Yanhui, Y., Nanotecnology 2010, vol. 21, no. 16, p. 165103.

    Article  CAS  Google Scholar 

  34. Dong, L., Peng, H., Wang, S., Zhang, Z., Li, J., and Ai, F., J. Appl. Polymer Sci., 2014, vol. 131, no. 13, p. 40477.

    Article  CAS  Google Scholar 

  35. Zhang, J., Qu, F.Y., Lin, H.M., Wu, X., and Jiang, J.J., Mater. Res. Innovations 2012, vol. 16, no. 3, p. 230.

    Article  CAS  Google Scholar 

  36. Wan, M.M., Yang, J.Y., Qiu, Y., Zhou, Y., Guan, C.X., and Hou, Q., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, p. 4113.

    Article  PubMed  CAS  Google Scholar 

  37. De Muth, P., Hurley, M., Wu, C., Galanie, S., Zachariah, M.R., and De Shong, P., Micropor. Mesopor. Mater. 2011, vol. 141, nos. 1–3, p. 128.

    Google Scholar 

  38. Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., and Bai, C., Int. J. Pharm. 2013, vol. 446, nos. 1–2, p. 153.

    Article  PubMed  CAS  Google Scholar 

  39. Xing, R., Lin, H., Jiang, P., and Qu, F., Colloids Surf., A 2012, vol. 403, p. 7.

    Article  CAS  Google Scholar 

  40. Tang, J., Slowing, I.I., Huang, Y., Trewyn, B.G., Hu, J., and Liu, H., J. Colloid Interface Sci., 2011, vol. 360, no. 2, p. 488.

    Article  PubMed  CAS  Google Scholar 

  41. Mei, X., Chen, D., Li, N., Xu, Q., Ge, J., and Li, H., Micropor. Mesopor. Mater. 2012, vol. 152, p. 16.

    Article  CAS  Google Scholar 

  42. Xue, M. and Findenegg, G.H., Langmuir 2012, vol. 28, no. 50, p. 17578.

    Article  PubMed  CAS  Google Scholar 

  43. Choi, Y.L., Lee, J.H., Jaworski, J., and Jung, J.H., J. Mater. Chem., 2012, vol. 22, no. 19, p. 9455.

    Article  CAS  Google Scholar 

  44. Tarn, D., Xue, M., and Zink, J.I., Inorg. Chem. 2013, vol. 52, no. 4, p. 2044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Barat, J., Pérez-Esteve, É., Bernardos, A., and Martínez-Máñez, R., Proc. Food Sci., 2011, vol. 1, p. 1828.

    Article  CAS  Google Scholar 

  46. Wu, X., Wang, Z., Zhu, D., Zong, S., Yang, L., and Zhong, Y., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 21, p. 10895.

    Article  PubMed  CAS  Google Scholar 

  47. Hwang, A.A., Lu, J., Tamanoi, F., and Zink, J.I., Small 2015, vol. 11, no. 3, p. 319.

    Article  PubMed  CAS  Google Scholar 

  48. Li, X., Tang, T., Zhou, Y., Zhang, Y., and Sun, Y., Micropor. Mesopor. Mater. 2014, vol. 184, p. 83.

    Article  CAS  Google Scholar 

  49. Hou, L., Zhu, C., Wu, X., Chen, G., and Tang, D., Chem. Commun. 2014, vol. 50, no. 12, p. 1441.

    Article  CAS  Google Scholar 

  50. Xue, J.M. and Shi, M., J. Controlled Release, 2004, vol. 98, no. 2, p. 209.

    Article  CAS  Google Scholar 

  51. Perge, L., Guillemot, C., Robitzer, M., Devoisselle, J.-M., Quignard, F., and Legrand, P., in Proc. 7th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, La Valette, Malta, 2010, p. 68.

    Google Scholar 

  52. Lai, C.-Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., and Jeftinija, S., J. Am. Chem. Soc., 2003, vol. 125, no. 15, p. 4451.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao, Y., Trewyn, B.G., Slowing, I.I., and Lin, V., SY., J. Am. Chem. Soc., 2009, vol. 131, no. 24, p. 8398.

    Article  CAS  Google Scholar 

  54. Yan, H., Teh, C., Sreejith, S., Zhu, L., Kwok, A., and Fang, W., Angew. Chem., Int. Ed., 2012, vol. 51, no. 33, p. 8373.

    Article  CAS  Google Scholar 

  55. Guo, W., Yang, C., Cui, L., Lin, H., and Qu, F., Langmuir 2014, vol. 30, no. 1, p. 343.

    Article  CAS  Google Scholar 

  56. Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., and Martínez-Máñez, R., Langmuir 2012, vol. 28, no. 41, p. 14766.

    Article  PubMed  CAS  Google Scholar 

  57. Cui, Y., Dong, H., Cai, X., Wang, D., and Li, Y., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 6, p. 3177.

    Article  PubMed  CAS  Google Scholar 

  58. Lu, J., Liong, M., Li, Z., Zink, J.I., and Tamanoi, F., Small 2010, vol. 6, no. 16, p. 1794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang, S., Chu, Z., Yin, C., Zhang, C., Lin, G., and Li, Q., J. Am. Chem. Soc., 2013, vol. 135, no. 15, p. 5709.

    Article  PubMed  CAS  Google Scholar 

  60. Huang, X., Zhuang, J., Teng, X., Li, L., Chen, D., and Yan, X., Biomaterials 2010, vol. 31, no. 24, p. 6142.

    Article  PubMed  CAS  Google Scholar 

  61. Hudson, S.P., Padera, R.F., Langer, R., and Kohane, D.S., Biomaterials 2008, vol. 29, no. 30, p. 4045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Slowing, I.I., Vivero-Escoto, J.L., Wu, C.-W., and Lin, V.S.Y., Adv. Drug Delivery Rev. 2008, vol. 60, no. 11, p. 1278.

    Article  CAS  Google Scholar 

  63. Kwon, S., Singh, R.K., Pérez, R.A., Abou, N.E.A., Kim, H.-W., and Chrzanowski, W., J. Tissue Eng., 2013, vol. 4, 2041731413503357.

  64. Trewyn, B.G., Giri, S., Slowing, I.I., and Lin, V.S.Y., Chem. Commun. 2007, vol. 31, p. 3236.

    Article  CAS  Google Scholar 

  65. Seleem, M.N., Munusamy, P., Ranjan, A., Alqublan, H., Pickrell, G., and Sriranganathan, N., Antimicrob. Agents Chemother. 2009, vol. 53, no. 10, p. 4270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Czarnobaj, K. and Sawicki, W., Pharm. Dev. Technol. 2013, vol. 18, no. 2, p. 377.

    Article  PubMed  CAS  Google Scholar 

  67. Roveri, N., Morpurgo, M., Palazzo, B., Parma, B., and Vivi, L., Anal. Bioanal. Chem. 2005, vol. 381, no. 3, p. 601.

    Article  PubMed  CAS  Google Scholar 

  68. Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., and Ruan, M., Angew. Chem., Int. Ed., 2005, vol. 44, no. 32, p. 5083.

    Article  CAS  Google Scholar 

  69. Radin, S., Chen, T., and Ducheyne, P., Biomaterials 2009, vol. 30, no. 5, p. 850.

    Article  PubMed  CAS  Google Scholar 

  70. Kurczewska, J., Sawicka, P., Ratajczak, M., Gajecka, M., and Schroeder, G., Int. J. Pharm. 2015, vol. 486, nos. 1–2, p. 226.

    Article  PubMed  CAS  Google Scholar 

  71. Hwang, Y.-J., Oh, C., and Oh, S.-G., J. Controlled Release, 2005, vol. 106, no. 3, p. 339.

    Article  CAS  Google Scholar 

  72. Rupprecht, H., Unger, K., Kramer, H., and Kircher, W., in Proc. the Third Int. Symp. of Microencapsulation, Controlled Release of Silica Embedded Drugs, 1979.

    Google Scholar 

  73. Baino, F., Fiorilli, S., Mortera, R., Onida, B., Saino, E., and Visai, L., J. Appl. Biomater. Funct. Mater., 2012, vol. 10, no. 1, p. 12.

    PubMed  Google Scholar 

  74. Radin, S., El-Bassyouni, G., Vresilovic, E.J., Schepers, E., and Ducheyne, P., Biomaterials 2005, vol. 26, no. 9, p. 1043.

    Article  PubMed  CAS  Google Scholar 

  75. Manchón, A., Alkhraisat, M., Rueda-Rodriguez, C., Torres, J., Prados-Frutos, J.C., Ewald, A., et al., J. Biomed. Mater. Res., Part A 2015, vol. 103, no. 2, p. 479.

    Article  CAS  Google Scholar 

  76. Roh, J., Kim, J.-Y., Choi, Y.-M., Ha, S.-M., Kim, K.-N., and Kim, K.-M., Materials 2016, vol. 9, no. 2, p. 97.

    Article  PubMed Central  CAS  Google Scholar 

  77. Zhang, S., Guo, Y., Dong, Y., Wu, Y., Cheng, L., and Wang, Y., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 21, p. 13242.

    Article  PubMed  CAS  Google Scholar 

  78. Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., and Xue, Y., J. Mater. Chem. B, 2015, vol. 3, no. 16, p. 3222.

    Article  CAS  Google Scholar 

  79. Lee, E.-J. and Kim, H.-E., Mater. Sci. Eng., C 2016, vol. 59, p. 339.

    Article  CAS  Google Scholar 

  80. Zhang, X., Zeng, D., Li, N., Wen, J., Jiang, X., and Liu, C., Sci. Rep. 2016, vol. 6, p. 19361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Huang, S., Cheng, Z., Ma, Pa., Kang, X., Dai, Y., and Lin, J., Dalton Trans. 2013, vol. 42, no. 18, p. 6523.

    Article  PubMed  CAS  Google Scholar 

  82. Vivero-Escoto, J.L., Taylor-Pashow, K.M.L., Huxford, R.C., Della Rocca, J., Okoruwa, C., and An, H., Small, 2011, vol. 7, no. 24, p. 3519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kempen, P.J., Greasley, S., Parker, K.A., Campbell, J.L., Chang, H.-Y., and Jones, J.R., Theranostics 2015, vol. 5, no. 6, p. 631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Taylor, K.M.L., Kim, J.S., Rieter, W.J., An, H., Lin W., and Lin W., J. Am. Chem. Soc. 2008, vol. 130, no. 7, p. 2154.

    Article  PubMed  CAS  Google Scholar 

  85. Wartenberg, N., Fries, P., Raccurt, O., Guillermo, A., Imbert, D., and Mazzanti, M., Chem.-Eur. J. 2013, vol. 19, no. 22, p. 6980.

    Article  PubMed  CAS  Google Scholar 

  86. Chen, H., Sulejmanovic, D., Moore, T., Colvin, D.C., Qi, B., and Mefford, O.T., Chem. Mater. 2014, vol. 26, no. 6, p. 2105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lee, H. and Kee, Y.D., Mater. Lett. 2013, vol. 100, p. 98.

    Article  CAS  Google Scholar 

  88. Darbandi, M., Laurent, S., Busch, M., Li, Z.-A., Yuan, Y., and Krüger, M., J. Nanopart. Res., 2013, vol. 15, no. 5, p. 1.

    Article  CAS  Google Scholar 

  89. Iqbal, M.Z., Ma, X., Chen, T., Zhang, L., Ren, W., and Xiang, L., J. Mater. Chem. B, 2015, vol. 3, no. 26, p. 5172.

    Article  CAS  Google Scholar 

  90. Tanaka, K., Narita, A., Kitamura, N., Uchiyama, W., Morita, M., and Inubushi, T., Langmuir 2010, vol. 26, no. 14, p. 11759.

    Article  PubMed  CAS  Google Scholar 

  91. Gu, J., Zhang, W., and Yang, X., Mater. Lett. 2013, vol. 94, p. 8.

    Article  CAS  Google Scholar 

  92. Zhang, G., Gao, J., Qian, J., Cai, D., Zheng, K., Yu, Z., et al., Part. Part. Syst. Charact. 2014, vol. 31, no. 9, p. 976.

    Article  CAS  Google Scholar 

  93. Taboada, E., Solanas, R., Rodríguez, E., Weissleder, R., and Roig, A., Adv. Funct. Mater. 2009, vol. 19, no. 14, p. 2319.

    Article  CAS  Google Scholar 

  94. Kim, T., Momin, E., Choi, J., Yuan, K., Zaidi, H., and Kim, J., J. Am. Chem. Soc., 2011, vol. 133, no. 9, p. 2955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Fu, J., Zhao, Y., Zhu, Y., and Chen, F., Organics modified mesoporous silica for controlled drug delivery systems, in Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering, Tiwari, A. and Tiwari, A., Eds., Wiley, 2013, p. 233.

  96. Kura, A., Fakurazi, S., Hussein, M., and Arulselvan, P., Chem. Cent. J. 2014, vol. 8, no. 1, p. 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yang, P., Gai, S., and Lin, J., Chem. Soc. Rev. 2012, vol. 41, no. 9, p. 3679.

    Article  PubMed  CAS  Google Scholar 

  98. Chowdhury, M.A., Int. J. Biol. Macromol. 2014, vol. 65, p. 136.

    Article  PubMed  CAS  Google Scholar 

  99. Chowdhury, M.A., Hill, D.J.T., and Whittaker, A.K., J. Biomater. Sci., Polym. Ed., 2005, vol. 16, no. 8, p. 1047.

    Article  CAS  Google Scholar 

  100. Chowdhury, M.A., Hill, D.J.T., and Whittaker, A.K., Aust. J. Chem. 2005, vol. 58, no. 6, p. 451.

    Article  CAS  Google Scholar 

  101. Chowdhury, M.A., Hill, D.J.T., and Whittaker, A.K., Biomacromolecules 2004, vol. 5, no. 3, p. 971.

    Article  PubMed  CAS  Google Scholar 

  102. Chowdhury, M.A., Hill, D.J.T., Whittaker, A.K., Braden, M., and Patel, M.P., Biomacromolecules 2004, vol. 5, no. 4, p. 1405.

    Article  PubMed  CAS  Google Scholar 

  103. Della Rocca, J. and Lin, W., Eur. J. Inorg. Chem. 2010, no. 24, p. 3725.

    Article  CAS  Google Scholar 

  104. Crossgrove, J. and Zheng, W., NMR Biomed., 2004, vol. 17, no. 8, p. 544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Chowdhury.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.A. Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. Ref. J. Chem. 8, 223–241 (2018). https://doi.org/10.1134/S2079978018020024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978018020024

Keywords

Navigation