Skip to main content
Log in

Synthesis of Highly Effective α-Fe2O3 Catalyst for the Spin Conversion of Liquid Hydrogen

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A series of α-Fe2O3 catalysts were prepared by precipitation method by changing calcination temperatures, solvents, precursor concentration, and bases. The structure and morphology of the synthesized catalysts were characterized by SEM, XRD, XPS, and Raman spectroscopy, and the liquid-phase spin conversion of ortho-hydrogen to para-hydrogen was performed by in situ FTIR spectroscopy at cryogenic temperature 17 K. The spin conversion was affected by catalysts calcination temperature, initial precursor concentration, solvents used, and precipitating agent. The highly dispersed and most active α-Fe2O3 was obtained using double-distilled water as solvent and sodium hydroxide solution as precipitating agent followed by calcination at 393 K for 12 h. The formation of hydrated Fe (OH)3 or FeOOH during synthesis of α-Fe2O3 at 393 K dramatically enhanced the catalytic activity and ortho to para-hydrogen spin conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hovener JB, Bar S, Leupold J, Jenne K, Leibfritz D, Hennig J, Duckett SB, Von Elverfeldt D (2013) A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting. NMR Biomed 26(2):124–131

    Google Scholar 

  2. Das T, Nah IW, Choi J-G, Oh I-H (2016) Synthesis of iron oxide catalysts using various methods for the spin conversion of hydrogen. Reac Kinet Mech Cat 118:669–681

    Google Scholar 

  3. Kim JH, Karng SW, Oh I-H, Nah IW (2015) Ortho-para hydrogen conversion characteristics of amorphous and mesoporous Cr2O3 powders at a temperature of 77 K. Int J Hydrog Eng 40:14147–14153

    Google Scholar 

  4. Buntkowsky G, Walaszek B, Adamezyk A, Xu Y, Limbach H-H, Chaudret B (2006) Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. Phys Chem Chem Phys 8:1929–1935

    Google Scholar 

  5. Balu AM, Duckett SB, Luque R (2009) Para-hydrogen induced polarization effects in liquid phase hydrogenations catalysed by supported metal nanoparticles. Dalton Trans 26:5074–5076

    Google Scholar 

  6. Chekmenev EY, Hovener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP (2008) PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc 130:4212–4213

    Google Scholar 

  7. Van den Berg AWC, Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681

    Google Scholar 

  8. Pehr K, Sauermann P, Traeger O, Bracha M (2001) Liquid hydrogen for motor vehicles-the world’s first public LH2 filling station. Int J Hydrog Energy 26:777–782

    Google Scholar 

  9. Cheng X-L, Jiang J-S, Jin C-Y, Lin C-C, Zeng Y, Zhang Q-H (2014) Cauliflower-like α-Fe2O3 microstructures: toluene-water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis. Chem Eng J 236:139–148

    Google Scholar 

  10. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides -a review. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  11. Wang W, Bu F-X, Jiang J-S (2015) Porous TiO2 coated α-Fe2O3 ginger-like nanostructures with enhanced electrochemical properties. Mater Lett 139:89–92

    Google Scholar 

  12. Long NV, Yang Y, Yuasa M, Thi CM, Cao Y, Nann T, Nogami M (2014) Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv 4:8250–8255

    Google Scholar 

  13. Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K (2014) CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting. Int J Hydrog Energy 39:13381–13388

    Google Scholar 

  14. Avila-Garcia A, Carbajal-Franco G (2003) α-Fe2O3 films grown by the spin-on sol-gel deposition method. Rev Mex Fis 49(3):219–223

    Google Scholar 

  15. Das T, Kweon S-C, Choi J-G, Kim SY, Oh I-H (2015) Spin conversion of hydrogen over LaFeO3/Al2O3 catalysts at low temperature: synthesis, characterization and activity. Int J Hydrog Energy 40:383–391

    Google Scholar 

  16. Ding J, Zhong Q, Zhang S (2014) Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SOx removal: effect of calcinations temperature. J Mol Cata A: Chem 393:222–231

    Google Scholar 

  17. Khedr MH, Abdel Halim KS, Nasr MI, El-Mansy AM (2006) Effect of temperature on the catalytic oxidation of CO over nano-sized iron oxide. Mat Sci Eng A 430:40–45

    Google Scholar 

  18. Riley CR, Montgomery NE, Megally NN, Gunn JA, Davis LS (2012) Oxidation of cyclohexane by transition metal oxides on zeolites. Open Catal J 5:8–13

    Google Scholar 

  19. Nogueira FGE, Lopes JH, Silva AC, Lago RM, Fabris JD, Oliveria LCA (2011) Catalysts based on clay and iron oxide for oxidation of toluene. Appl Clay Sci 51:385–389

    Google Scholar 

  20. Tsodikov MV, Kugel VY, Slivinskii EV, Bondarenko GN, Maksimov YV, Alvarez MA, Hidalgo MC, Navio JA (2000) Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron-aluminum oxides prepared by alkoxy method. Appl Catal A: Gen 193:237–242

    Google Scholar 

  21. Ilisca E (1992) Ortho-para conversion of hydrogen molecules physisorbed on surfaces. Prog Surf Sci 41:217–335

    ADS  Google Scholar 

  22. Andrews L, Wang X (2004) Simple ortho-para hydrogen and para-ortho deuterium converter for matrix isolation spectroscopy. Rev Sci Instrum 75(9):3039–3044

    ADS  Google Scholar 

  23. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface fictionalization strategies. Nanoscale Res Lett 3:397–415

    ADS  Google Scholar 

  24. Abdulkadir I, Aliyu AB (2013) Some wet routes synthesis of hematite nanostructures. Afr J Pure Appl Chem 7(3):114–121

    Google Scholar 

  25. Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF (2013) Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater Sci Semicond Process 16:802–806

    Google Scholar 

  26. Galvita VV, Poelman H, Detavernier C, Marin GB (2015) Catalyst-assisted chemical looping for CO2 conversion to CO. Appl Catal B 164:184–191

    Google Scholar 

  27. Au-Yeung SCF, Denes G, Greedan JE, Eaton DR, Birchall T (1984) A novel synthesis route to “iron trihydroxide, Fe(OH)3”: characterization and magnetic properties. Inorg Chem 23:1513–1517

    Google Scholar 

  28. Mascolo MC, Pei Y, Ring TA (2013) Room temperature Co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567

    ADS  Google Scholar 

  29. Chaudhuri S, Bhattacharjya D, Yu J-S (2013) 1-dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Adv 3:25120–25128

    Google Scholar 

  30. Chung D-W, Kim TG (2007) Solvent effect on the hydrosilylation reactions for the synthesis of polydimethylsiloxane grafted with polyoxyethylene catalyzed by Speier’s catalyst. J Ind Eng Chem 13(6):979–984

    Google Scholar 

  31. Zhang Y, Liu Y, Yang G, Sun S, Tsubaki N (2007) Effect of impregnation solvent on Co/SiO2 catalyst for Fischer–Tropsch synthesis: a highly active and stable catalyst with bimodal sized cobalt particles. Appl Catal A 321:79–85

    Google Scholar 

  32. Kumar P, Singh RK, Rawat N, Barman PB, Katyal SC, Jang H, Lee H-N, Kumar R (2013) A novel method for controlled synthesis of nanosized hematite (α-Fe2O3) thin film on liquid-vapor interface. J Nanopart Res 15:1532

    Google Scholar 

  33. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Coll Interface Sci 128–130:5–15

    Google Scholar 

  34. Zhang G-Y, Feng Y, Xu Y-Y, Gao D-Z, Sun Y-Q (2012) Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res Bull 47:625–630

    Google Scholar 

  35. Xiao Z, Xia Y, Ren Z, Liu Z, Xu G, Chao C, Li X, Shen G, Han G (2012) Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J Mater Chem 22:20566–20573

    Google Scholar 

  36. Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D (2008) Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J Colloid Interface Sci 318:315–321

    ADS  Google Scholar 

  37. Hassanjani-Roshan A, Reza Vaezi M, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particulogy 9:95–99

    Google Scholar 

  38. Sohn JR, Lim JS (2006) Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis. Mater Res Bull 41:1225–1241

    Google Scholar 

  39. Routray K, Zhou W, Kiely CJ, Wachs IE (2011) Catalysis sicence of methanol oxidation over iron vanadate catalysts: nature of the catalytic active sites. ACS Catal 1:54–66

    Google Scholar 

  40. Spoto G, Vitillo JG, Cocina D, Damin A, Bonino F, Zecchina A (2007) FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer. Phys Chem Chem Phys 9:4992–4999

    Google Scholar 

  41. Tam S, Fazardo ME (1999) Ortho/Para hydrogen converter for rapid deposition matrix isolation spectroscopy. Rev Sci Instrum 70(4):1926–1932

    ADS  Google Scholar 

  42. Dhanasekaran V, Anandhavelu S, Polychroniadis EK, Mahalingam T (2014) Microstructural properties evaluation of Fe2O3 nanostructures. Mater Lett 126:288–290

    Google Scholar 

  43. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhanced NMR sensitivity by polarization transfer. Science 323:1708–1711

    ADS  Google Scholar 

  44. Wang C-T, Ro S-H (2006) Surface nature of nanoparticle gold/iron oxide aerogel catalysts. J Nano-Cryst Solids 352:35–43

    ADS  Google Scholar 

  45. Fujii T, de Groot FMF, Sawatzky GA, Vootgt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxides fills grown by NO2-assisted molecular-beam epitaxy. Physical Review B 59(4):3195–3202

    ADS  Google Scholar 

  46. Lin J-N, Chen J-H, Hsiao C-Y, Kang Y-M, Wan B-Z (2002) Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation. Appl Catal B 36:19–29

    Google Scholar 

  47. Grosvenor AP, Kobe BA, Biesinger MC, Mcintyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Google Scholar 

  48. Weckhuysen BW, Wang D, Rosynek MP, Lunsford JH (1998) Conversion of methane to benzene over transition metal ion ZSM-5 zeolites. J Catal 175:347–351

    Google Scholar 

  49. Epling WS, Hoflund GB, Weaver JF, Tsubota S, Haruta M (1996) Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts. J Phys Chem 100:9929–9934

    Google Scholar 

  50. Lin T-C, Seshadri G, Kelber JA (1997) A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl Surf Sci 119:83–92

    ADS  Google Scholar 

  51. Wu H, Wu G, Wang L (2015) Peculiar porous α-Fe2O3, γ-Fe2O3, and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol 269:443–451

    Google Scholar 

  52. Hartl M, Gillis RC, Daemen L, Olds DP, Page K, Carlson S, Cheng Y, Hugle T, Iverson EB, Ramirez-Cuesta AJ, Lee Y, Muhrer G (2016) Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel. Phys Chem Chem Phys 18:17281

    Google Scholar 

Download references

Acknowledgement

This research work was supported by Convergence Research Program funded by the Ministry of Future Creation and Science (2013K000402), South Korea. J. Choi appreciates Hannam University for the supporting the period from April 1, 2017 to March 31, 2018. T. Das thanks to the Director and SRIC, IIT Roorkee for supporting through SMILE (SMILE-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taraknath Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Choi, JG. & Oh, IH. Synthesis of Highly Effective α-Fe2O3 Catalyst for the Spin Conversion of Liquid Hydrogen. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 399–409 (2020). https://doi.org/10.1007/s40010-019-00599-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-019-00599-3

Keywords

Navigation