Skip to main content
Log in

Classification of priors and regularization techniques appurtenant to single image super-resolution

  • Survey
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image super-resolution (SR) is the process of restoration of high-resolution (HR) image from its degraded images/image. Exigency of high-quality images in different technical fields has led it to be one of the prominent research domains in the area of digital image processing. In SR process, image reconstruction from single low-resolution (LR) image is more onerous process than obtaining it from multi-LR images. Performance of single image SR (SISR) processes is increased by utilizing different image priors in form of regularization. Use of regularization in mathematical equation helps in better visualization and reconstruction of original HR image. Its implementation requires maneuver and is a very important part of the image reconstruction process. In this paper, an attempt has been made to classify the existing techniques based on the priors used. Types of image priors and regularization used so far in the field of SISR have been discussed in detailed, comprising the recent advancements in this area. It also consists of the problems and limitations of the existing image priors and regularizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016). https://doi.org/10.1016/j.sigpro.2016.05.002

    Article  Google Scholar 

  2. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003). https://doi.org/10.1109/msp.2003.1203207

    Article  Google Scholar 

  3. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004). https://doi.org/10.1002/ima.20007

    Article  Google Scholar 

  4. Tian, J., Ma, K.-K.: A survey on super-resolution imaging. Signal, Image Video Process. 5(3), 329–342 (2011). https://doi.org/10.1007/s11760-010-0204-6

    Article  Google Scholar 

  5. Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014). https://doi.org/10.1007/s00138-014-0623-4

    Article  Google Scholar 

  6. Chappalli, M., Bose, N.: Simultaneous noise filtering and super-resolution with second-generation wavelets. IEEE Signal Process. Lett. 12(11), 772–775 (2005). https://doi.org/10.1109/lsp.2005.856875

    Article  Google Scholar 

  7. Faramarzi, E., Rajan, D., Christensen, M.P.: Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution. IEEE Trans. Image Process. 22(6), 2101–2114 (2013). https://doi.org/10.1109/tip.2013.2237915

    Article  MathSciNet  MATH  Google Scholar 

  8. Rhee, S., Kang, M.G.: DCT-based regularized algorithm for high-resolution image reconstruction, In: Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), IEEE. https://doi.org/10.1109/icip.1999.817096

  9. Pandey, G., Ghanekar, U.: A compendious study of super-resolution techniques by single image. Optik 166, 147–160 (2018). https://doi.org/10.1016/j.ijleo.2018.03.103

    Article  Google Scholar 

  10. Gohshi, S., Echizen, I.: Limitations of super resolution image reconstruction and how to overcome them for a single image, in. International Conference on Signal Processing and Multimedia Applications (SIGMAP), 71–78 (2013)

  11. Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 1–14. Springer, Berlin (2010)

    MATH  Google Scholar 

  12. Li, X., Orchard, M.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001). https://doi.org/10.1109/83.951537

    Article  Google Scholar 

  13. Li, M., Nguyen, T.: Markov random field model-based edge-directed image interpolation. IEEE Trans. Image Process. 17(7), 1121–1128 (2008). https://doi.org/10.1109/tip.2008.924289

    Article  MathSciNet  Google Scholar 

  14. Getreuer, P.: Image interpolation with geometric contour stencils. Image Process. Line (2011). https://doi.org/10.5201/ipol.2011.g_igcs

    Article  MATH  Google Scholar 

  15. Hung, K.-W., Siu, W.-C.: Robust soft-decision interpolation using weighted least squares. IEEE Trans. Image Process. 21(3), 1061–1069 (2012). https://doi.org/10.1109/tip.2011.2168416

    Article  MathSciNet  MATH  Google Scholar 

  16. Fahmy, G., Single image superresolution using e-SPLINE functions. In: IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE (2015). https://doi.org/10.1109/isspit.2015.7394412

  17. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.-L.A.: Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization, In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE (2012). https://doi.org/10.1109/icassp.2012.6288125

  18. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012). https://doi.org/10.1109/tip.2012.2192127

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010). https://doi.org/10.1109/tip.2010.2050625

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmed, J., Shah, M.A.: Single image super-resolution by directionally structured coupled dictionary learning. EURASIP J. Image Video Process. 1, 1 (2016). https://doi.org/10.1186/s13640-016-0141-6

    Article  Google Scholar 

  21. Xu, K., Wang, X., Yang, X., He, S., Zhang, Q., Yin, B., Wei, X., Lau, R.W.H.: Efficient image super-resolution integration. Vis. Comput. 34(6), 1065–1076 (2018). https://doi.org/10.1007/s00371-018-1554-2

    Article  Google Scholar 

  22. Shaham, T.R., Michaeli, T.: Visualizing image priors. In: European Conference on Computer Vision, Springer, pp. 136–153 (2016)

  23. Thapa, D., Raahemifar, K., Bobier, W.R., Lakshminarayanan, V.: A performance comparison among different super-resolution techniques. Comput. Electr. Eng. 54, 313–329 (2016). https://doi.org/10.1016/j.compeleceng.2015.09.011

    Article  Google Scholar 

  24. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding, In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR (2004). IEEE. https://doi.org/10.1109/cvpr.2004.1315043

  25. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2008). https://doi.org/10.1109/cvpr.2008.4587647

  26. Gao, X., Zhang, K., Tao, D., Li, X.: Image super-resolution with sparse neighbor embedding. IEEE Trans. Image Process. 21(7), 3194–3205 (2012). https://doi.org/10.1109/tip.2012.2190080

    Article  MathSciNet  MATH  Google Scholar 

  27. Bannore, V.: Regularization for super-resolution image reconstruction. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, pp. 36–46. Springer, Berlin (2006)

    Chapter  Google Scholar 

  28. Traonmilin, Y., Ladjal, S., Almansa, A.: On the amount of regularization for super-resolution reconstruction, Research report, Telecom ParisTech (2012). https://hal.archives-ouvertes.fr/hal-00763984

  29. O’Grady, P.D., Pearlmutter, B.A., Rickard, S.T.: Survey of sparse and non-sparse methods in source separation. Int. J. Imaging Syst. Technol. 15(1), 18–33 (2005). https://doi.org/10.1002/ima.20035

    Article  Google Scholar 

  30. Villena, S., Vega, M., Babacan, S., Molina, R., Katsaggelos, A.: Bayesian combination of sparse and non-sparse priors in image super resolution. Digit. Signal Proc. 23(2), 530–541 (2013). https://doi.org/10.1016/j.dsp.2012.10.002

    Article  MathSciNet  Google Scholar 

  31. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-based super-resolution for face recognition, In: Proceedings. International Conference on Image Processing, 2, pp. II–II (2002). https://doi.org/10.1109/ICIP.2002.1040083

  32. Tappen, B.C.R.M.F., Freeman, W.T.: Exploiting the sparse derivative prior for super-resolution and image demosaicing, In: 3rd International Workshop on Statistical and Computational Theories of Vision (associated with Intl. Conf. on Computer Vision), Nice, France, October (2003)

  33. Takeda, H., Farsiu, S., Milanfar, P.: Robust kernel regression for restoration and reconstruction of images from sparse noisy data, In: 2006 International Conference on Image Processing, IEEE (2006). https://doi.org/10.1109/icip.2006.312573

  34. Garrigues, P., Olshausen, B.A.: Group sparse coding with a laplacian scale mixture prior, In: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems 23, Curran Associates, Inc., pp. 676–684 (2010). http://papers.nips.cc/paper/3997-group-sparse-coding-with-a-laplacian-scale-mixture-prior.pdf

  35. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011). https://doi.org/10.1109/tip.2011.2108306

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces, pp. 711–730. Springer, Berlin (2012)

    Chapter  Google Scholar 

  37. He, L., Qi, H., Zaretzki, R.: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution, In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2013). https://doi.org/10.1109/cvpr.2013.51

  38. Dong, W., Shi, G., Ma, Y., Li, X.: Image restoration via simultaneous sparse coding: where structured sparsity meets gaussian scale mixture. Int. J. Comput. Vis. 114(2), 217–232 (2015). https://doi.org/10.1007/s11263-015-0808-y

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior, In: 2015 IEEE International Conference on Computer Vision (ICCV), IEEE (2015). https://doi.org/10.1109/iccv.2015.50

  40. Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25(7), 3194–3207 (2016). https://doi.org/10.1109/tip.2016.2564643

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, Y., Dong, W., Xie, X., Shi, G., Wu, J., Li, X.: Image super-resolution with parametric sparse model learning. IEEE Trans. Image Process. 27(9), 4638–4650 (2018). https://doi.org/10.1109/tip.2018.2837865

    Article  MathSciNet  Google Scholar 

  42. Li, X., Cao, G., Zhang, Y., Wang, B.: Single image super-resolution via adaptive sparse representation and low-rank constraint. J. Vis. Commun. Image Represent. 55, 319–330 (2018). https://doi.org/10.1016/j.jvcir.2018.06.012

    Article  Google Scholar 

  43. Li, Y., Dong, W., Shi, G., Xie, X.: Learning parametric distributions for image super-resolution: Where patch matching meets sparse coding. In: 2015 IEEE International Conference on Computer Vision (ICCV), IEEE (2015). https://doi.org/10.1109/iccv.2015.59

  44. Pickup, L.C., Roberts, S.J., Zisserman, A.: A sampled texture prior for image super-resolution, In: S. Thrun, L. K. Saul, B. Schölkopf (Eds.), Advances in Neural Information Processing Systems 16, MIT Press, pp. 1587–1594 (2004). http://papers.nips.cc/paper/2381-a-sampled-texture-prior-for-image-super-resolution.pdf

  45. Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y.: Soft edge smoothness prior for alpha channel super resolution, In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2007). https://doi.org/10.1109/cvpr.2007.383028

  46. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior, In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2008). https://doi.org/10.1109/cvpr.2008.4587659

  47. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010). https://doi.org/10.1109/tpami.2010.25

    Article  Google Scholar 

  48. Singh, A., Ahuja, N.: Sub-band energy constraints for self-similarity based super-resolution, In: 22nd International Conference on Pattern Recognition, IEEE (2014). https://doi.org/10.1109/icpr.2014.761

  49. Villena, S., Vega, M., Molina, R., Katsaggelos, A.: A non-stationary image prior combination in super-resolution. Digit. Signal Process. 32, 1–10 (2014). https://doi.org/10.1016/j.dsp.2014.05.017

    Article  Google Scholar 

  50. Liu, X., Zhai, D., Chen, R., Ji, X., Zhao, D., Gao, W.: Depth super-resolution via joint color-guided internal and external regularizations. IEEE Trans. Image Process. 28(4), 1636–1645 (2019). https://doi.org/10.1109/tip.2018.2875506

    Article  MathSciNet  Google Scholar 

  51. Kwon, Y., Kim, K.I., Tompkin, J., Kim, J.H., Theobalt, C.: Efficient learning of image super-resolution and compression artifact removal with semi-local gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1792–1805 (2015). https://doi.org/10.1109/tpami.2015.2389797

    Article  Google Scholar 

  52. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009). https://doi.org/10.1109/tip.2008.2008067

    Article  MathSciNet  MATH  Google Scholar 

  53. Dong, L.Z.W., Shi, G.: Centralized sparse representation for image restoration, In: Proc. IEEE ICCV, Nov. pp. 1259–1266 (2011)

  54. Lu, X., Yuan, H., Yan, P., Yuan, Y., Li, X.: Geometry constrained sparse coding for single image super-resolution, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2012). https://doi.org/10.1109/cvpr.2012.6247858

  55. Wang, S., Zhang, L., Liang, Y., Pan, Q.: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2012). https://doi.org/10.1109/cvpr.2012.6247930

  56. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013). https://doi.org/10.1109/tip.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  57. Dong, W., Zhang, L., Lukac, R., Shi, G.: Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE Trans. Image Process. 22(4), 1382–1394 (2013). https://doi.org/10.1109/tip.2012.2231086

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, K., Tao, D., Gao, X., Li, X., Xiong, Z.: Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans. Image Process. 24(3), 846–861 (2015). https://doi.org/10.1109/tip.2015.2389629

    Article  MathSciNet  MATH  Google Scholar 

  59. Egiazarian, K., Katkovnik, V., Single image super-resolution via BM3d sparse coding, In: 23rd European Signal Processing Conference (EUSIPCO). IEEE (2015). https://doi.org/10.1109/eusipco.2015.7362905

  60. Shi, J., Qi, C.: Low-rank sparse representation for single image super-resolution via self-similarity learning, In: IEEE International Conference on Image Processing (ICIP), IEEE (2016). https://doi.org/10.1109/icip.2016.7532593

  61. Gong, W., Tang, Y., Chen, X., Yi, Q., Li, W.: Combining edge difference with nonlocal self-similarity constraints for single image super-resolution. Neurocomputing 249, 157–170 (2017). https://doi.org/10.1016/j.neucom.2017.03.067

    Article  Google Scholar 

  62. Lu, X., Lü, X.: ADMM for image restoration based on nonlocal simultaneous sparse bayesian coding. Sig. Process. Image Commun. 70, 157–173 (2019). https://doi.org/10.1016/j.image.2018.09.012

    Article  Google Scholar 

  63. Lu, X., Lü, X., Zuo, Y.: Spherically contoured exponential scale mixture prior based nonlocal image restoration with ADMM framework. J. Vis. Commun. Image Represent. 55, 374–392 (2018). https://doi.org/10.1016/j.jvcir.2018.05.021

    Article  Google Scholar 

  64. Guo, K., Yang, X., Zha, H., Lin, W., Yu, S.: Multiscale semilocal interpolation with antialiasing. IEEE Trans. Image Process. 21(2), 615–625 (2012). https://doi.org/10.1109/tip.2011.2165290

    Article  MathSciNet  MATH  Google Scholar 

  65. Doshi, M., Gajjar, P., Kothari, A.: Zoom based image super-resolution using DCT with LBP as characteristic model. J. King Saud Univ. Comput. Inf. Sci. (2018). https://doi.org/10.1016/j.jksuci.2018.10.005

    Article  Google Scholar 

  66. Vijayan, A., Salam, V.: A new approach for super resolution by using web images and FFT based image registration. Int. J. Eng. Trends Technol. 12(9), 473–479 (2014). https://doi.org/10.14445/22315381/ijett-v12p289

    Article  Google Scholar 

  67. Hadhoud, M.M.: Regularized super-resolution reconstruction of images using wavelet fusion. Opt. Eng. 44(9), 097001 (2005). https://doi.org/10.1117/1.2042947

    Article  Google Scholar 

  68. Wei, X., Dragotti, P.L.: FRESH–FRI-based single-image super-resolution algorithm. IEEE Trans. Image Process. 25(8), 3723–3735 (2016). https://doi.org/10.1109/tip.2016.2563178

    Article  MathSciNet  MATH  Google Scholar 

  69. Jiji, C., Chaudhuri, S.: Single-frame image super-resolution through contourlet learning. EURASIP J. Adv. Signal Process. 2006(1), 235 (2006). https://doi.org/10.1155/asp/2006/73767

    Article  Google Scholar 

  70. Shah, A.J., Makwana, R., Gupta, S.B.: Single image super-resolution via non subsample contourlet transform based learning and a gabor prior. Int. J. Comput. Appl. 64(18), 32–38 (2013). https://doi.org/10.5120/10735-5580

    Article  Google Scholar 

  71. Shah, A.J., Gupta, S.B.: A technique to preserve edge information in single image super resolution. Proced. Comput. Sci. 85, 100–108 (2016). https://doi.org/10.1016/j.procs.2016.05.186

    Article  Google Scholar 

  72. Ebrahimi, M., Vrscay, E.R.: Solving the inverse problem of image zooming using “self-examples”. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, pp. 117–130. Springer, Berlin (2007)

    Chapter  Google Scholar 

  73. Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Non-local kernel regression for image and video restoration. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision—ECCV 2010, pp. 566–579. Springer, Berlin (2010)

    Chapter  Google Scholar 

  74. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012). https://doi.org/10.1109/tip.2012.2208977

    Article  MathSciNet  MATH  Google Scholar 

  75. Li, Y., Wang, Y., Li, Y., Jiao, L., Zhang, X., Stolkin, R.: Single image super-resolution reconstruction based on genetic algorithm and regularization prior model. Inf. Sci. 372((C)), 196–207 (2016). https://doi.org/10.1016/j.ins.2016.08.049

    Article  Google Scholar 

  76. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Gr. Appl. 22(2), 56–65 (2002). https://doi.org/10.1109/38.988747

    Article  Google Scholar 

  77. Liu, Z.: Single-image super-resolution based on markov random field and contourlet transform. J. Electron. Imaging 20(2), 023005 (2011). https://doi.org/10.1117/1.3580750

    Article  Google Scholar 

  78. Shabaninia, E., Naghsh-Nilchi, A.R., Kasaei, S.: High-order markov random field for single depth image super-resolution. IET Comput. Vis. 11(8), 683–690 (2017). https://doi.org/10.1049/iet-cvi.2016.0373

    Article  Google Scholar 

  79. Cruz, C., Mehta, R., Katkovnik, V., Egiazarian, K.O.: Single image super-resolution based on wiener filter in similarity domain, CoRR arXiv:1704.04126

  80. George, A.R.V.S.N.: Robust single image super resolution using neighbor embedding and fusion in wavelet domain. Comput. Electr. Eng. 70, 674–689 (2018). https://doi.org/10.1016/j.compeleceng.2017.09.020

    Article  Google Scholar 

  81. Fernandez-Granda, C., Candes, E.J.: Super-resolution via transform-invariant group-sparse regularization. In: 2013 IEEE International Conference on Computer Vision, IEEE (2013). https://doi.org/10.1109/iccv.2013.414

  82. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005). https://doi.org/10.1137/040605412

    Article  MathSciNet  MATH  Google Scholar 

  83. Marquina, A., Osher, S.J.: Image super-resolution by tv-regularization and bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008). https://doi.org/10.1007/s10915-008-9214-8

    Article  MathSciNet  MATH  Google Scholar 

  84. Yang, Y.-F.: Image-zooming technique based on bregmanized nonlocal total variation regularization. Opt. Eng. 50(9), 097008 (2011). https://doi.org/10.1117/1.3625417

    Article  Google Scholar 

  85. Li, L., Xie, Y., Hu, W., Zhang, W.: Single image super-resolution using combined total variation regularization by split bregman iteration. Neurocomputing 142, 551–560 (2014). https://doi.org/10.1016/j.neucom.2014.02.045

    Article  Google Scholar 

  86. Goto, T., Fukuoka, T., Nagashima, F., Hirano, S., Sakurai, M.: Super-resolution system for 4k-HDTV. In: 2014 22nd International Conference on Pattern Recognition, IEEE (2014). https://doi.org/10.1109/icpr.2014.762

  87. Li, X., He, H., Wang, R., Tao, D.: Single image superresolution via directional group sparsity and directional features. IEEE Trans. Image Process. 24(9), 2874–2888 (2015). https://doi.org/10.1109/tip.2015.2432713

    Article  MathSciNet  MATH  Google Scholar 

  88. Wilscy, V.S.M.: Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery. Opt. Commun. 404, 80–93 (2017). https://doi.org/10.1016/j.optcom.2017.05.074

    Article  Google Scholar 

  89. Yang, X., Zhang, J., Liu, Y., Zheng, X., Liu, K.: Super-resolution image reconstruction using fractional-order total variation and adaptive regularization parameters. Vis. Comput. (2018). https://doi.org/10.1007/s00371-018-1570-2

    Article  Google Scholar 

  90. Ferstl, D., Ruther, M., Bischof, H.: Variational depth superresolution using example-based edge representations, In: 2015 IEEE International Conference on Computer Vision (ICCV), IEEE (2015). https://doi.org/10.1109/iccv.2015.66

  91. Ren, C., He, X., Nguyen, T.: Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature. IEEE Trans. Image Process. 1, 1 (2016). https://doi.org/10.1109/tip.2016.2619265

    Article  MATH  Google Scholar 

  92. Sun, L., Zhan, T., Wu, Z., Jeon, B.: A novel 3d anisotropic total variation regularized low rank method for hyperspectral image mixed denoising. ISPRS Int. J. Geo-Inf. 7(10), 412 (2018). https://doi.org/10.3390/ijgi7100412

    Article  Google Scholar 

  93. Li, J.: Sparse representation based single image super-resolution with low-rank constraint and nonlocal self-similarity. Multimed. Tools Appl. 77(2), 1693–1714 (2017). https://doi.org/10.1007/s11042-017-4399-1

    Article  Google Scholar 

  94. Haris, M., Widyanto, M.R., Nobuhara, H.: First-order derivative-based super-resolution. Signal, Image and Video Processing 11(1), 1–8 (2017). https://doi.org/10.1007/s11760-016-0880-y

    Article  Google Scholar 

  95. Tappen, M.F., Russell, B.C., Freeman, W.T.: Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of Vision (2003)

  96. Ferreira, J.C., Meur, O.L., Guillemot, C., da Silva, E.A.B., Carrijo, G.A.: Single image super-resolution using sparse representations with structure constraints. In: 2014 IEEE International Conference on Image Processing (ICIP), IEEE (2014). https://doi.org/10.1109/icip.2014.7025784

  97. Jiang, J., Yang, J., Pan, Z.: Super-resolution reconstruction based on structure tensor’s eigenvalue and classification dictionary. In: 2016 International Conference on Audio, Language and Image Processing (ICALIP), IEEE (2016). https://doi.org/10.1109/icalip.2016.7846641

  98. Feng, Y., Liu, X., Zhang, Y., Dai, Q.: Single depth image super-resolution and denoising based on sparse graphs via structure tensor. In: 2017 IEEE International Conference on Image Processing (ICIP), IEEE (2017). https://doi.org/10.1109/icip.2017.8297046

  99. Kim, K.I., Kwon, Y.: Example-based learning for single-image super-resolution. In: Rigoll, G. (ed.) Pattern Recognition, pp. 456–465. Springer, Berlin (2008)

    Chapter  Google Scholar 

  100. Liu, X., Zhao, D., Xiong, R., Ma, S., Gao, W., Sun, H.: Image interpolation via regularized local linear regression. IEEE Trans. Image Process. 20(12), 3455–3469 (2011). https://doi.org/10.1109/tip.2011.2150234

    Article  MathSciNet  MATH  Google Scholar 

  101. Gao, X., Zhang, K., Tao, D., Li, X.: Joint learning for single-image super-resolution via a coupled constraint. IEEE Trans. Image Process. 21(2), 469–480 (2012). https://doi.org/10.1109/tip.2011.2161482

    Article  MathSciNet  MATH  Google Scholar 

  102. He, H., Siu, W.-C.: Single image super-resolution using gaussian process regression. In: CVPR 2011, IEEE (2011). https://doi.org/10.1109/cvpr.2011.5995713

  103. Kim, J., Kim, C., Discrete feature transform for low-complexity single-image super-resolution, In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE (2016). https://doi.org/10.1109/apsipa.2016.7820852

  104. Tang, Y., Shao, L.: Pairwise operator learning for patch-based single-image super-resolution. IEEE Trans. Image Process. 26(2), 994–1003 (2017). https://doi.org/10.1109/tip.2016.2639440

    Article  MathSciNet  MATH  Google Scholar 

  105. Zhang, C., Liu, W., Liu, J., Liu, C., Shi, C.: Sparse representation and adaptive mixed samples regression for single image super-resolution. Sig. Process. Image Commun. 67, 79–89 (2018). https://doi.org/10.1016/j.image.2018.06.001

    Article  Google Scholar 

  106. Ni, K.S., Nguyen, T.Q.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16(6), 1596–1610 (2007). https://doi.org/10.1109/tip.2007.896644

    Article  MathSciNet  Google Scholar 

  107. Tang, Y., Yuan, Y., Yan, P., Li, X.: Greedy regression in sparse coding space for single-image super-resolution. J. Vis. Commun. Image Represent. 24(2), 148–159 (2013). https://doi.org/10.1016/j.jvcir.2012.02.003

    Article  Google Scholar 

  108. Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for image super-resolution. In: Eurographics (2015)

  109. Hu, J., Luo, Y.: Single-image superresolution based on local regression and nonlocal self-similarity. J. Electron. Imaging 23(3), 033014 (2014). https://doi.org/10.1117/1.jei.23.3.033014

    Article  Google Scholar 

  110. Yu, S., Kang, W., Ko, S., Paik, J.: Single image super-resolution using locally adaptive multiple linear regression. J. Opt. Soc. Am. A 32(12), 2264 (2015). https://doi.org/10.1364/josaa.32.002264

    Article  Google Scholar 

  111. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression, In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2013). https://doi.org/10.1109/cvpr.2013.141

  112. Choi, J.-S., Kim, M.: Single image super-resolution using global regression based on multiple local linear mappings. IEEE Trans. Image Process. 26(3), 1300–1314 (2017). https://doi.org/10.1109/tip.2017.2651411

    Article  MathSciNet  MATH  Google Scholar 

  113. Liu, C., Fang, F., Xu, Y., Shen, C.: Single image super-resolution based on nonlocal sparse and low-rank regularization. In: PRICAI 2016: Trends in Artificial Intelligence, Springer International Publishing, pp. 251–261 (2016). https://doi.org/10.1007/978-3-319-42911-3_21

  114. Ren, C., He, X., Teng, Q., Wu, Y., Nguyen, T.Q.: Single image super-resolution using local geometric duality and non-local similarity. IEEE Trans. Image Process. 25(5), 2168–2183 (2016). https://doi.org/10.1109/tip.2016.2542442

    Article  MathSciNet  MATH  Google Scholar 

  115. Jiang, J., Ma, X., Chen, C., Lu, T., Wang, Z., Ma, J.: Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means. IEEE Trans. Multimed. 19(1), 15–26 (2017). https://doi.org/10.1109/tmm.2016.2599145

    Article  Google Scholar 

  116. Timofte, R., Gool, V. De. L. V.: Anchored neighborhood regression for fast example-based super-resolution, In: 2013 IEEE International Conference on Computer Vision, IEEE (2013). https://doi.org/10.1109/iccv.2013.241

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, G., Ghanekar, U. Classification of priors and regularization techniques appurtenant to single image super-resolution. Vis Comput 36, 1291–1304 (2020). https://doi.org/10.1007/s00371-019-01729-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01729-z

Keywords

Navigation