Skip to main content
Log in

Combustion-Synthesized Ni–Cd Ferrites and their Structural, Magnetic, and Microwave Absorbing Properties

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Ni1 – xCdxFe2O4 ferrites (x = 0.2, 0.4, 0.6) were prepared by solution-combustion synthesis and characterized by XRD, SEM, FTIR spectra, hysteresis measurements, and voltage standing wave ratio (VSWR). The ferrite particles had a size of 20–30 nm. The saturation magnetization observed for x = 0.6 composition was about 56 emu/g. The real and complex permittivity in the frequency range 8–12 GHz was found to vary between 10 and 30. The Cd content of ferrites was found to increase the MW absorption. At x = 0.6, the MW absorbance attained a value of 0.958 at f = 9.5 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chamaani, S., Mirtaheri, S.A., Teshnehlab, M., Shoorehdeli, M.A., and Seydi, V., Modified multi-objective particle swarm optimization for electromagnetic absorber design, Prog. Electromagn. Res., 2008, vol. 79, pp. 353–366. https://doi.org/10.2528/PIER07101702

    Article  Google Scholar 

  2. Tamboli, A.M., Rathod, S.M., and Rabbani, G., Effect of Dielectric properties of nanocrystalline Ferrite material due to substitution of Cu2+in Co Ni, Int. J. Electron. Electr. Comp. Systems, 2017, vol. 6, no. 6, pp. 243–253. http://academicscience.co.in/admin/resources/project/paper/f201706131497346174.pdf.

    Google Scholar 

  3. Prathap, S. and Madhuri, W., Multiferroic properties of microwave sintered PbFe12 − xO19 − δ, J. Magn. Magn. Mater., 2017, vol. 430, pp. 114–122. https://doi.org/10.1016/j.jmmm.2016.12.116

    Article  Google Scholar 

  4. Ashiq, M.N. and Iqbal, M.J., Structural, magnetic, and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles, J. Alloys Compd., 2009, vol. 487, nos. 1–2, pp. 341–345. https://doi.org/10.1016/j.jallcom.2009.07.140

    Article  Google Scholar 

  5. Nath, S.K., Maria, K.H., Noor, S., Sikder, S.S., Hoque, S.M., and Hakim, M.A., Magnetic ordering in Ni–Cd ferrite, J. Magn. Magn. Mater., 2012, vol. 324, no. 13, pp. 2116–2120. https://doi.org/10.1016/j.jmmm.2012.02.023

    Article  Google Scholar 

  6. Tadjarodi, A., Rahimi, R., Imani, M., Kerdari, H., and Rabbani, M., Synthesis, characterization, and microwave absorbing properties of the novel ferrite nanocomposites, J. Alloys Compd., 2012, vol. 542, pp. 43–50. https://doi.org/10.1016/j.jallcom.2012.07.049

    Article  Google Scholar 

  7. Hajalilou, A., Mazlan, S.A., and Shameli, K., A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni–Zn ferrite, J. Phys. Chem. Solids, 2016, vols. 96–97, pp. 49–59. https://doi.org/10.1016/j.jpcs.2016.05.001

    Article  Google Scholar 

  8. Chen, B., Chen, D., Kang, Z., and Zhang, Y., Preparation and microwave absorption properties of Ni–Co nanoferrites, J. Alloys Compd., 2015, vol. 618, pp. 222–226. https://doi.org/10.1016/j.jallcom.2014.08.195

    Article  Google Scholar 

  9. Chen, D., Zhang, Y., and Tu, C., Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling, Mater. Lett., 2012, vol. 82, pp. 10–12. https://doi.org/10.1016/j.matlet.2012.05.034

    Article  Google Scholar 

  10. Srinivasan, G., Tatarenko, A.S., and Bichurin, M.I., Electrically tunable microwave filters based on ferromagnetic resonance in ferrite-ferroelectric bilayers, Electron. Lett., 2005, vol. 41, no. 10, pp. 596–597. https://doi.org/10.1049/el:20050925

    Article  Google Scholar 

  11. Chou, Y.-H., Jeng, M.-J., Lee, Y.-H., and Jan, Y.-G., Measurement of RF PCB dielectric properties and losses, Prog. Electromagn. Res. Lett., 2008, vol. 4, pp. 139–148. https://doi.org/10.2528/PIERL08072403

    Article  Google Scholar 

  12. He, X., Tang, Z.-X., Zhang, B., and Wu, Y., A new deembedding method in permittivity measurement of ferroelectric thin film material, Prog. Electromagn. Res. Lett., 2008, vol. 3, pp. 1–8. https://doi.org/10.2528/PIERL08011501

    Article  Google Scholar 

  13. Jadhav, R.N. and Puri, V., Microwave absorption, conductivity, and complex pemittivity of fritless Ni1–xCuxMn2O4 (0 ≤ x ≤ 1) ceramic thick film: Effect of copper, Prog. Electromagn. Res. C, 2009, vol. 8, pp. 149–160. https://doi.org/10.2528/PIERC09052502

    Article  Google Scholar 

  14. Kim, S.S., Jo, S.B., Guen, K.I., Choi, K.K., Kim, J.M., and Churn, K.S., Complex permeability and permittivity and microwave absorption of ferrite rubber composites, IEEE Trans. Magn., 1991, vol. 27, no. 6, pp. 5462–5464. https://doi.org/10.1109/20.278872

    Article  Google Scholar 

  15. Vhankhande, B.B., Jadhav, S.V., Kulkarni, D.C., and Puri, V., Investigations on the microwave properties of electropolymerized polyaniline thin film, Microwave Opt. Technol. Lett., 2008, vol. 50, pp. 761–766. https://doi.org/10.1002/mop.23196

    Article  Google Scholar 

  16. Adam, S.F., Microwave Theory and Applications, New Jersey: Prentice Hall, 1969, Ch. 2-3, p. 63.

    Google Scholar 

  17. Shelar, M.B., Chougule, S.S., Mallapur, M.M., Chougule, B.K., and Puri, V.J., Structural and electrical properties of nickel cadmium ferrites prepared through self-propagating auto combustion method, J. Alloys Compd., 2009, vol. 476, nos. 1–2, pp. 760–764. https://doi.org/10.1016/j.jallcom.2008.09.107

    Article  Google Scholar 

  18. Modi, K.B., Rangolia, M.K., Chhantbar, M.C., and Joshi, H.H., Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites, J. Mater. Sci., 2006, vol. 41, no. 22, pp. 7308–7318. https://doi.org/10.1007/s10853-006-0929-3

    Article  Google Scholar 

  19. Abbas, T., Islam, M.U., and Ashraf Ch.M., Study of sintering behavior and electrical properties of Cu–Zn–Fe–O system, Mod. Phys. Lett. B, 1995, vol. 9, no. 22, pp. 1419–1426. https://doi.org/10.1142/S0217984995001418

    Article  Google Scholar 

  20. Anjum, S., Hassnain, G., Rumaiz, J.A.K., Rafique, M.S., and Shah, S.I., Role of vacancies in transport and magnetic properties of nickel ferrite thin films, J. Phys. D: Appl. Phys., 2010, vol. 43, no. 26, 265001. https://doi.org/10.1088/0022-3727/43/26/265001

    Article  Google Scholar 

  21. Wang, L., Lu, J.B., Li, J., Hua, J., Liu, M., Zhang, Y.M., and Li, H.B., Cation distribution and magnetic properties of CoAlxFe2 – xO4/SiO2 nanocomposites, Phys. B: Condens. Matter, 2013, vol. 421, pp. 8–12. https://doi.org/10.1016/j.physb.2013.04.020

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Rajarambapu Institute of Technology, Islampur for supporting our work at Physics Lab, Department of Science and Humanities, and Department of Physics, Shivaji University for their help in characterizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shelar.

Additional information

Affiliated to Shivaji University, Kolhapur, India

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelar, M.B., Yadav, S.N. Combustion-Synthesized Ni–Cd Ferrites and their Structural, Magnetic, and Microwave Absorbing Properties. Int. J Self-Propag. High-Temp. Synth. 28, 173–178 (2019). https://doi.org/10.3103/S1061386219030142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219030142

Keywords:

Navigation