Skip to main content
Log in

Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flow of salt water as a base fluid containing nanoparticles of different shapes, viz. zigzag, chiral, and armchair, in an asymmetric permeable channel has been investigated. Such particles in peristaltic flow with a magnetic field have noteworthy medical applications. Two illustrative models, namely those of Hamilton and Crosser, are utilized. The set of governing partial differential equations is solved analytically to find exact solutions, and numerical results are obtained using computer software. A rich summary of the latest findings for pertinent parameters and trapping phenomena is presented using graphs, tables, and streamline diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Latham TW. Fluid motion in a peristaltic pump MS thesis, Camb Mass Inst Technol. 1966.

  2. Shapiro AH. Pumping and retrograde diffusion in peristaltic waves. In: Proceedings of workshop on ureteral reflux in children, Washington DC; 1967. p. 109–126.

  3. Fung YC, Yih CS. Peristaltic transport. J Appl Mech. 1968;35:669–75.

    Article  Google Scholar 

  4. Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z Angew Math Phys (ZAMP). 2003;54:532–50.

    Article  Google Scholar 

  5. Khan LA, Reza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles in peristaltic flow of MHD nanofluids filled in an asymmetric channel: a novel mode for heat transfer enhancement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  6. Prakash J, Tripathi D, Triwari AK, Sait SM, Ellahi R. Peristaltic pumping of nanofluids through tapered channel in porous environment: applications in blood flow. Symmetry. 2019;11(7):868.

    Article  CAS  Google Scholar 

  7. Riaz R, Ellahi R, Bhatti MM, Marin M. Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular complaint channel. Heat Transf Res. 2019;50(16):1539–60.

    Article  Google Scholar 

  8. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  9. Choi S, Singer D, Wang H. Developments and applications of non-Newtonian flows. ASME Fed. 1995;66:99–105.

    Google Scholar 

  10. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7(4):227–33.

    Article  CAS  Google Scholar 

  11. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.

    Article  CAS  Google Scholar 

  12. Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297:787–92.

    Article  CAS  PubMed  Google Scholar 

  13. Zhan G-D, Kuntz JD, Wan J, Mukherjee AK. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater. 2003;2:38.

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Huang H, Wu Y, Fan S. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl Phys Lett. 2004;84:4248–50.

    Article  CAS  Google Scholar 

  15. Sivakumar R, Guo S, Nishimura T, Kagawa Y. Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater. 2007;56:265–8.

    Article  CAS  Google Scholar 

  16. Chu K, Wu Q, Jia C, Liang X, Nie J, Tian W, et al. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol. 2010;70:298–304.

    Article  CAS  Google Scholar 

  17. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  18. Chen L, Xie H, Li Y, Yu W. Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta. 2008;477:21–4.

    Article  CAS  Google Scholar 

  19. Saqib M, Ali F, Khan I, Sheikh NA, Shafie SB. Convection in ethylene glycol-based molybdenum disulfide nanofluid. J Therm Anal Calorim. 2019;135(1):523–32.

    Article  CAS  Google Scholar 

  20. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  21. Asadollahi A, Rashidi S, Esfahani JA. Condensation process and phase-change in the presence of obstacles inside a minichannel. Meccanica. 2017;52:2265–74.

    Article  Google Scholar 

  22. Duursma G, Sefiane K, Dehaene A, Harmand S, Wang Y. Flow and heat transfer of single-and two-phase boiling of nanofluids in microchannels. Heat Transf Eng. 2015;36:1252–65.

    Article  CAS  Google Scholar 

  23. Majka TM, Raftopoulos KN, Pielichowski K. The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim. 2018;133(1):289–301.

    Article  CAS  Google Scholar 

  24. Asadollahi A, Rashidi S, Mohamad AA. Removal of the liquid from a micro-object and controlling the surface wettability by using a rotating shell-Numerical simulation by lattice-Boltzmann method. J Mol Liq. 2018;272:645–55.

    Article  CAS  Google Scholar 

  25. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, AbuNada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian AB, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  26. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows. J Therm Anal Calorim. 2019;135(3):1733–41.

    Article  CAS  Google Scholar 

  27. Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci. 2016;72:190–6.

    Article  CAS  Google Scholar 

  28. Khan I, Khan WA. Effect of viscous dissipation on MHD water-Cu and EG-Cu nanofluids flowing through a porous medium. J Therm Anal Calorim. 2019;135(1):645–56.

    Article  CAS  Google Scholar 

  29. Malvandi A, Safaei M, Kaffash M, Ganji D. MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J Magn Magn Mater. 2015;382:296–306.

    Article  CAS  Google Scholar 

  30. Bhatti MM, Abbas T, Rashidi MM. Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM. J Comput Des Eng. 2017;4(1):21–8.

    Google Scholar 

  31. Bhatti MM, Abbas T, Rashidi M. Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-Newtonian nanofluid through a porous shrinking sheet. J Magn. 2016;21:468–75.

    Article  Google Scholar 

  32. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383:276–81.

    Article  CAS  Google Scholar 

  33. Ellahi R, Sait SM, Shehzad N, Mobin N. Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry. 2019;11:1038.

    Article  CAS  Google Scholar 

  34. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131.

    Article  CAS  Google Scholar 

  35. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M, Ellahi R, Shafee A, Li Z. Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: an application of entropy generation and exergy loss. Int J Numer Meth Heat Fluid Flow. 2019;29(3):1079–102.

    Article  Google Scholar 

  37. Mamourian M, Shirvan KM, Pop I. Sensitivity analysis for MHD effects and inclination angles on natural convection heat transfer and entropy generation of Al2O3-water nanofluid in square cavity by response surface methodology. Int Commun Heat Mass Transf. 2016;79:46–57.

    Article  CAS  Google Scholar 

  38. Shirvan KM, Mirzakhanlari S, Öztop HF, Mamourian M, Al-Salem K. MHD heat transfer and entropy generation in inclined trapezoidal cavity filled with nanofluid. Int J Numer Methods Heat Fluid Flow. 2017;27(10):2174–202.

    Article  Google Scholar 

  39. Mekheimer KS. Peristaltic flow of a magneto-micropolar fluid: effect of induced magnetic field. J Appl Math. 2008;2008:570825.

    Article  Google Scholar 

  40. Mekheimer KS. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A. 2008;372:4271–8.

    Article  CAS  Google Scholar 

  41. Nadeem S, Akbar NS. Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. J Taiwan Inst Chem Eng. 2011;42:58–66.

    Article  CAS  Google Scholar 

  42. Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.

    Article  CAS  Google Scholar 

  43. Yu W, Choi S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J Nanopart Res. 2004;6:355–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ellahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M., Ellahi, R., Sait, S.M. et al. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim 140, 1277–1291 (2020). https://doi.org/10.1007/s10973-019-09097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09097-5

Keywords

Navigation