Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of Fe-doping Li4Ti5O12 anode material for energy storage device

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, we report a higher electrochemical performances of Li4Ti5O12 (LTO) anode material via solid method, then adding different contents of Fe2O3 into LTO (FxLTO, x = 0.1, 0.2, 0.3, 0.4) secondary calcined. The study shows that pure LTO holds the highest electrochemical performances at 750 °C. Additionally, F0.2LTO demonstrates an outstanding discharge capacity of 251.9 mAh g−1 at 20 mA g−1 for lithium ion batteries; even cycled at 100 mA g−1 for 100 times, a capacity of 192.1 mAh g−1 retains. Particularly, the specific capacitance of Fe0.2LTO, with higher surface area of 28.4937 m2 g−1 and pore volume of 0.4187 ml g−1, reaches 65.17, 46.56, 26.71, 19.32 F g−1 at 50, 100, 500, 1000 mA g−1 for hybrid capacitors, respectively. Even cycled at 50 mA g−1 for 500 times, a capacitance of 20.18 F g−1 retains. Obviously, Fe0.2LTO demonstrates the remarkable electrochemical performances than LTO for lithium ion batteries and hybrid capacitors. Therefore, Fe-doping LTO has enhanced electrochemical performance as anode material for energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National International Technology Cooperation Plan (Grant no. 2014DFR50570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Xia Dong.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JR., Dong, GX., Li, ZF. et al. Enhanced electrochemical performance of Fe-doping Li4Ti5O12 anode material for energy storage device. Chem. Pap. 74, 1495–1504 (2020). https://doi.org/10.1007/s11696-019-01002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-01002-6

Keywords

Navigation