Skip to main content
Log in

High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data

  • Original Paper
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Twenty wetland-related data products (including remote sensing datasets, compilation datasets and model simulation datasets) were collected to evaluate the characteristics (area and distribution) of the wetlands in the Qinghai–Tibet Plateau (QTP) during four stages (1980s, 1990s, 2000s, and 2010s). We conducted a statistical analysis of the wetland areas from different datasets and compared the pixel consistency regarding wetland spatial distribution. The results showed that high uncertainty exists in the wetland area and low consistency exists in the distribution among the different datasets. The wetland area in the QTP ranged from 1.5 × 104 to 121.16 × 104 km2. In the remote sensing datasets, the wetland area in the QTP ranged from 3.25 × 104 to 11.28 × 104 km2, the calculated area was between 1.50 × 104 and 72.21 × 104 km2 in the compilation datasets, and the area simulated from model datasets was between 3.81 × 104 and 121.16 × 104 km2. For the total wetland area in the QTP, the uncertainty in the measured datasets was lower than that in the model simulation datasets. However, for the distribution of wetlands, the measured datasets were more inconsistent than the model datasets. In the measured datasets, as the pixel consistency increased, the corresponding probability throughout the area decreased. The probability of achieving 75% consistency was less than 2%, and was 0.61%, 0.35%, 1%, and 1.43% in the four stages, respectively. In the model products, the probability of achieving 75% consistency was 40.39%. Our study will enrich the global wetland database and contribute to the establishment of a plateau wetland information system, which will be significant for the protection and management of wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arino O, Bicheron P, Achard F, Latham J, Witt R, Weber JL (2008) GLOBCOVER the most detailed portrait of Earth. Esa Bull Eur Space Agency 136:24–31

    Google Scholar 

  • Aselmann I, Crutaen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Bartholome E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015) Global land cover mapping at 30 m resolution: a POK-based operational approach. Isprs J Photogramm Remote Sens 103:7–27

    Article  Google Scholar 

  • Costanza R, Darge R, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, Vanden Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941

    Article  Google Scholar 

  • Deng C, Zhang W (2018) Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau. Environ Monit Assess 190(6):368

    Article  PubMed  Google Scholar 

  • Dixon MJR, Loh J, Davidson NC, Beltrame C, Freeman R, Walpole M (2016) Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol Cons 193:27–35

    Article  Google Scholar 

  • Fan Y, Miguez-Macho G (2011) A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim Dyn 37:253–278

    Article  Google Scholar 

  • Finlayson M, Cruz RD, Davidson N, Alder J, Cork S, Groot RSD et al (2005) Millennium ecosystem assessment: ecosystems and human well-being: wetlands and water synthesis. Data Fus Concepts Ideas 656:87–98

    Google Scholar 

  • Finlayson CM, Clarke SJ, Davidson NC, Gell P (2016) Role of palaeoecology in describing the ecological character of wetlands. Mar Freshw Res 67(6):687

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang X, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182

    Article  Google Scholar 

  • Giri C, Zhu ZL, Reed B (2005) A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens Environ 94:123–132

    Article  Google Scholar 

  • Hansen MC, Reed B (2000) A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int J Remote Sens 21:1365–1373

    Article  Google Scholar 

  • Hu S, Niu Z, Chen Y, Li L, Zhang H (2017) Global wetland datasets: a review. Wetlands 37:807–817

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M (2005) Global warming and african climate change: a reassessment. In: Climate Change and Africa. pp 29–40. https://doi.org/10.1017/CBO9780511535864

    Google Scholar 

  • Latifovic R, Olthof I (2004) Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens Environ 90:153–165

    Article  Google Scholar 

  • Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Li H, Xiao P, Feng X, Yang Y, Wang L, Zhang W, Wang X, Feng W, Chang X (2017) Using land long-term data records to map land cover changes in China over 1981–2010. Ieee J Select Top Appl Earth Obs Remote Sens 10:1372–1389

    Article  Google Scholar 

  • Liang L, Gong P (2010) An assessment of MODIS collection 5 global land cover product for biological conservation studies. In: 18th international conference on geoinformatics. IEEE, 2010, pp 1–6

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Lu M, Wu W, Zhang L, Liao A, Peng S, Tang H (2016) A comparative analysis of five global cropland datasets in China. Sci China Earth Sci 59:2307–2317

    Article  Google Scholar 

  • Luo L (2005) Analysis of climatic background of wetlands degradation in the Qinghai–Xizang Plateau. Wetl Sci 3:190–199

    Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86

    Article  CAS  Google Scholar 

  • McCallum I, Obersteiner M, Nilsson S, Shvidenko A (2006) A spatial comparison of four satellite derived 1 km global land cover datasets. Int J Appl Earth Obs Geoinf 8:246–255

    Article  Google Scholar 

  • Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zurcher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10:753–788

    Article  Google Scholar 

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • National Research Council (1995) Wetlands: characteristics and boundaries. National Academies Press, pp 901–902

  • Nakaegawa T (2012) Comparison of water-related land cover types in six 1-km global land cover datasets. J Hydrometeorol 13:649–664

    Article  Google Scholar 

  • Neumann K, Herold M, Hartley A, Schmullius C (2007) Comparative assessment of CORINE2000 and GLC2000: spatial analysis of land cover data for Europe. Int J Appl Earth Obs Geoinf 9:425–437

    Article  Google Scholar 

  • Niu Z, Gong P, Cheng X, Guo J, Wang L, Huang H, Shen S, Wu Y, Wang X, Wang X, Ying Q, Liang L, Zhang L, Wang L, Yao Q, Yang Z, Guo Z, Dai Y (2009) Geographical characteristics of China’s wetlands derived from remotely sensed data. Sci China Ser D Earth Sci 52:723–738

    Article  Google Scholar 

  • Niu Z, Shan Y, Zhang H (2012a) Accuracy assessment of wetland categories from the GlobCover2009 data over China. Wetl Sci 10:389–395

    Google Scholar 

  • Niu Z, Zhang H, Wang H, Yao W, Zhou D, Zhao K, Zhao H, Li N, Huang H, Li C, Yang J, Liu C, Liu S, Wang L, Li Z, Yang Z, Qiao F, Zheng Y, Chen Y, Sheng Y, Gao X, Zhu W, Wang W, Wang H, Weng Y, Zhuang D, Liu J, Luo Z, Cheng X, Guo Z, Gong P (2012b) Mapping wetland changes in China between 1978 and 2008. Chin Sci Bull 57:2813–2823

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res Atmos 112:1103–1118

    Article  Google Scholar 

  • Russi D, Brink PT, Badura T et al (2013) The economics of ecosystems and biodiversity for water and wetlands. IEEP, London

    Google Scholar 

  • Schroeder R, Rawlins MA, McDonald KC, Podest E, Zimmermann R, Kueppers M (2010) Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data. Environ Res Lett 5(1):015003

    Article  Google Scholar 

  • Stillwell-Soller LM, Klinger LF, Pollard D (1995) The Global distribution of freshwater wetlands. https://pdfs.semanticscholar.org/5c32/cf90cbb47808bc1c14d27d746c0f709a7d56.pdf. Accessed 16 Sept 2019

  • Sukhdev P, Kumar P (2008) The economics of ecosystems and biodiversity (TEEB). European Communities, Wesseling, Germany

    Google Scholar 

  • Sun H, Zheng D, Yao T, Zhang Y (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr Sin 67:3–12

    Google Scholar 

  • Tateishi R, Uriyangqai B, Al-Bilbisi H, Ghar MA, Tsend-Ayush J, Kobayashi T, Kasimu A, Hoan NT, Shalaby A, Alsaaideh B, Enkhzaya T, Gegentana Y, Sato HP (2011) Production of global land cover data—GLCNMO. Int J Digit Earth 4:22–49

    Article  Google Scholar 

  • Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob Ecol Biogeogr 23:1031–1045

    Article  Google Scholar 

  • Wang G, Yuanshou L, Wang Y, Chen L (2007) Typical alpine wetland system changes on the Qinghai–Tibet Plateau in recent 40 years. Acta Geogr Sin 62:481–491

    Google Scholar 

  • Wania R, Melton JR, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Chen G, Eliseev AV, Hopcroft PO, Riley WJ, Subin ZM, Tian H, van Bodegom PM, Kleinen T, Yu ZC, Singarayer JS, Zurcher S, Lettenmaier DP, Beerling DJ, Denisov SN, Prigent C, Papa F, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci Model Dev 6:617–641

    Article  Google Scholar 

  • Wu W, Shibasaki R, Yang P, Ongaro L, Zhou Q, Tang H (2008) Validation and comparison of 1 km global land cover products in China. Int J Remote Sens 29:3769–3785

    Article  Google Scholar 

  • Xie G, Chun L, Leng Y, Zheng D, Shuang L (2003) Ecological assets valuation of the Tibetan Plateau. J Nat Resour 18:189–196

    Google Scholar 

  • Xing Y, Jiang Q, Wenqing L (2009) Landscape spatial patterns changes of the wetland in Qinghai–Tibet Plateau. Ecol Environ Sci 18:1010–1015

    Google Scholar 

  • Xu X, Tian H (2012) Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochem Cycles 26:1–14

    Article  CAS  Google Scholar 

  • Xu J, Morris PJ, Liu J, Holden J (2018) PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. CATENA 160:134–140

    Article  Google Scholar 

  • Yan F, Liu X, Chen J, Yu L, Yang C, Chang L, Yang J, Zhang S (2017) China’s wetland databases based on remote sensing technology. Chin Geogra Sci 27:374–388

    Article  Google Scholar 

  • Yang X (2008) An elementary introduction to supervised and unsupervised classification of remote sensing image. Acta Geologica Sichuan 28:251–254

    Google Scholar 

  • Yin S, Li B, Shen F (2014) Review on studies of wetland definition. Wetl Sci 12:504–514

    Google Scholar 

  • Zhao Z, Zhang Y, Liu L, Liu F, Zhang H (2015) Recent changes in wetlands on the Tibetan Plateau: a review. J Geog Sci 25:879–896

    Article  Google Scholar 

  • Zhu Q, Peng C, Liu J, Jiang H, Fang X, Chen H, Niu Z, Gong P, Liu G, Wang M, Wang H, Yang Y, Chang J, Ge Y, Xiang W, Deng X, He J (2016) Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci Rep 6:38020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2005010404), the National Natural Science Foundation of China (41571081), and the National Key R&D Program of China (2016YFC0501804, 2016YFC0500203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhu, Q., Yang, Y. et al. High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data. Landscape Ecol Eng 16, 47–61 (2020). https://doi.org/10.1007/s11355-019-00402-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-019-00402-w

Keywords

Navigation